
ZHAW School of Engineering
in collaboration with the

Artificial Intelligence Lab of the University
of Zurich

Bachelor thesis
May 2009

A Robot Learning
to Walk

Authors:
Urs Fässler, Nicolas Rüegg

Advisors:
Dr. R. Leuenberger (ZHAW),

M. Hoffmann (University of
Zurich)

May 15, 2009

Abstract

The goal of this work was to develop a dynamic quadruped robot based on a minimalistic
controller that exhibits a rich behavioral diversity including multiple gaits. The different
patterns of locomotion are the basis for adaptation and research into embodied cognition.

A simulated model of the robot was used to facilitate optimization of the body and
controller parameters. Using an evolutionary algorithm, suitable parameter values for
the three gaits ”walk”, ”trot” and ”bound” were found.

Since a different body evolved for each gait, we tried to find a compromise morphol-
ogy equally suitable for all gaits. In the process, we reached the limits of the existing
framework for the optimization of robots. Thus, a new program called Vidyaa for the
optimization of parameter values was developed. Due to its ability to nest optimization
tasks, Vidyaa allows a new approach to these kinds of problems.

It is expected that the insights gained can be transferred to a real version of the robot.

I

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Preliminary Work . 2

1.2.1 Puppy – A Quadruped Robot . 2
1.2.2 Framework for the Improvement of Robots 2
1.2.3 Additional Work Done . 4

2 Development of Gaits 5
2.1 Objective . 5
2.2 A Side Note to Biology - Gaits in Quadrupeds 6
2.3 Measurement of the Fitness . 7

2.3.1 Speed v . 7
2.3.2 Energy Consumption E . 7
2.3.3 d

E ratio . 11
2.4 Exploration of Parameter Values for Different Gaits 13

2.4.1 Walking Gait . 14
2.4.2 Trotting Gait . 17
2.4.3 Bounding Gait . 18

2.5 Compromise Morphology . 21
2.5.1 Design of the New Experiments . 22

2.6 Summary . 24

3 Vidyaa – Optimization Made Easy 26
3.1 Overview . 26
3.2 Requirements . 26
3.3 Implementation . 27

3.3.1 Basic Idea . 27
3.3.2 Architecture . 28

3.4 Features . 28
3.5 Roadmap . 29

4 Conclusion 30

Appendix 31

II

List of Figures

1.1 Default Puppy in Webots . 1

2.1 Energy consumption of a horse . 6
2.2 Energy flow in the robot . 8
2.3 Design of experiment 1 (movement of a mass) 9
2.4 Measured data from experiment 1 . 9
2.5 Comparision of the two methods for the power measurement 1 10
2.6 Measured data from experiment 2 . 10
2.7 Comparision of the two methods for the power measurement 2 11
2.8 f(d,E) = d

E . 12
2.9 f(d,E) = d− E . 13
2.10 f(d,E) = d− E with different scales. 14
2.11 Fittest walking individual in Webots . 15
2.12 Systematic variation of the frequency in the walking gait 16
2.13 Fittest trotting individual in Webots . 18
2.14 Systematic variation of the frequency in the trotting gait 19
2.15 Fittest bounding individual in Webots . 20
2.16 Systematic variation of the frequency in the bounding gait 21
2.17 Design of a complex experiment . 23
2.18 Stable walking version of Puppy . 25

3.1 The optimization process . 27

III

List of Tables

2.1 Parameters available for the optimization 5

3.1 Vidyaa Roadmap . 29

IV

Listings

2.1 calculateSpeed() . 7

V

1 Introduction

1.1 Overview

1 In the project ”From Locomotion to Cognition”, the University of Zurich’s AI Lab
engages several Ph.D. students. The main goal of this project is to find out what low-
level sensory-motor tasks such as locomotion, navigation, and grasping, have to do with
higher levels of cognition. Or to put it more provocatively, ”What does walking have to
do with thinking?”.

A part of the project also includes the exploration of the design principles of bio-
logically inspired legged quadrupeds. One of these robots is Puppy, an underactuated
quadruped with four active hip joints and four passive knee joints. Touch sensors at the
feet and potentiometers at the knee joints allow to measure feedback.

Figure 1.1 shows Puppy in the simulation.

Figure 1.1: Default Puppy in Webots

In our first task, the aim was to find suitable body and controller parameters for the
three gaits ”walk”, ”trot” and ”bound”. By using an evolutionary algorithm, we tried
to find as energy-efficient gaits as possible. The details of this process are described in
chapter 2, Development of Gaits.

Since different body parameters turned out to be suitable for each gait, we tried to
find a compromise body equally suitable for all gaits in our second task.

1Parts taken from [Hut08] and http://ailab.ifi.uzh.ch/research/legged-locomotion.

1

In the process, we reached the limits of the existing framework for the search of
appropriate parameter values. Thus, we developed a completely new program called
Vidyaa for the optimization of parameter values. This is described in chapter 3, Vidyaa
– Optimization Made Easy.

In chapter 4 (Conclusion), we look back on our work and discuss possible future work.
Finally, the appendix contains a manual to the used framework for the improvement

of robots, a manual for Vidyaa and the requirements which lead to its development.
Based on the insights and results of our work, future projects will try to use pattern

generators with sensory feedback for the control of the locomotion (see also [RI08]).
Also, it is hoped that the parameter values found and the corresponding gaits can be
used as the base for more complex behavior such as avoiding obstacles.

1.2 Preliminary Work

1.2.1 Puppy – A Quadruped Robot

In 2004, Iida and Pfeifer [IP04] conducted experiments to explore rapid locomotion of a
quadruped robot using PuppyI. PuppyI is a robot with four identical legs and a simple
sine-wave generator as motor controller. This robot has subsequently been improved and
extended with touch sensors at the feet and potentiometers at the knee joints allowing
to measure feedback (often referred to as PuppyII).

To explore its capabilities and further optimize it, a Webots-model2 was created.
Based on this model, different body and controller parameters such as the leg length or
the controller frequency are tested.

To conduct an automatic exploration and optimization of the parameters, M. Hoff-
mann wrote a framework including a simulated annealing algorithm. In 2008, it was
extended by an evolutionary algorithm as part of a student project. [Hut08]

Let us have a look at this framework more closely, as it was intensely used during the
first task.

1.2.2 Framework for the Improvement of Robots

Basically, the framework consists of two different parts. One part creates configuration
files which define the body and controller parameters of the robot. The values which are
written into these configuration files are determined by an optimization algorithm. The
other part takes these configuration files as input and generates a so called world -file
(.wbt) which determines the morphology of the robot and is finally read by Webots.

So far, three different optimization algorithms were implemented: Simulated anneal-
ing, an evolutionary algorithm and a systematic algorithm.3

2Webots is a simulation software for robots. It has been codeveloped by Cyberbotics and the Swiss
Federal Institute of Technology in Lausanne (EPFL).

3In the strict sense, the systematic algorithm is not an optimization algorithm, because it does not
optimize. It just tests all possible combinations of parameter values.

2

Simulated Annealing

Simulated annealing is an algorithm to locate a good approximation to the global mini-
mum of a given function.

The following definition is taken from [wik09] and is a good description of the basic
idea:

Each step of the simulated annealing algorithm replaces the current solution
by a random ”nearby” solution, chosen with a probability that depends on
the difference between the corresponding function values and on a global
parameter T (called the temperature), that is gradually decreased during the
process. The dependency is such that the current solution changes almost
randomly when T is large, but increasingly ”downhill” as T goes to zero.
The allowance for ”uphill” moves saves the method from becoming stuck at
local minima – which are the bane of greedier methods.

The implemented version of the simulated annealing algorithm is described in detail
in [Lun04].

Evolutionary Algorithm

The evolutionary algorithm is based on the principles of the theory of evolution. 4

Every generation contains a certain number of individuals of which some individuals
are selected as parents. Mutations (children) of the selected parents build the next
generation.

The fitness of an individual is determined by simulating it with Webots and the higher
its fitness is, the higher is its chance of becoming a parent.

In the implemented version, there are two different algorithms to select the parents.
With the leaders algorithm, the parents are randomly chosen from the fittest N indi-
viduals. If the roulette algorithm is used, the parents are randomly chosen from the
entire generation. The normalized fitness value of every individual is the probability
with which an individual is selected as a parent. Individuals with a high fitness value
are more likely to become parents (even more than once) than individuals with a low
fitness value.

Additionally, the algorithm exhibits a so called elitism switch. If elitism is on, the very
best individual of every generation is copied to the next generation without mutation.

Each parameter of a parent has a preset chance of being mutated. If a parameter is
mutated, it is calculated as follows:

Be pp the parent’s parameter value and pc the child’s parameter value then:

µ = (rmax − rmin) ∗ α (1.1)

pc = pp + xd() ∗ µ (1.2)

4That is not entirely true: Unlike nature, this implementation just uses mutation and no cross-over.

3

Here rmin and rmax are the minimum and maximum values for the current parameter.
The function xd() is a random number generator with the distribution d. Equation 1.2
is repeated until pc ∈ [rmin, rmax] is true.

To guarantee diversity, the parameter values of the first generation are uniformly
distributed over the entire search space.

Systematic Algorithm

To allow for systematic testing of parameter values, we extended the framework with
an algorithm which tests every possible combination of the free parameters. Unlike
the previously described algorithms, the systematic algorithm is not a optimization
algorithm.

Testing every possible combination of parameters is done by systematically increasing
the value of the free parameters until every combination is tried. Of course, this is very
time consuming with many free parameters and should be avoided for more than three
free parameters.

The pseudo code of this algorithm can be found in the appendix.

1.2.3 Additional Work Done

Besides the already mentioned implementation of the systematic algorithm, two param-
eters for the lateral (C Phase lateral) and anterior-posterior phase lag (C Phase AP) of
the leg movements were introduced into the framework:

C Phase FR = C Phase FL+ C Phase lateral (1.3)

C Phase HL = C Phase FL+ C Phase AP (1.4)

C Phase HR = C Phase FL+ C Phase lateral + C Phase AP (1.5)

This allows a reduction from three to two dimensions for the exploration of the phase lags
and is based on the assumption that it is sufficient to get all reasonable (symmetrical)
gaits. In our case, the phase lag of the fore left leg (C Phase FL) is always zero which
makes it even easier.

Additionally, we adapted the framework to Version 6.0.1 of Webots and corrected a
few bugs.

4

2 Development of Gaits

2.1 Objective

By using Webots and an optimization algorithm, parameter values as good as possible
should be found for different gaits of the simulated version of Puppy. The parameters
available for optimization are listed in table 2.1.1

Parameter Description Unit

FrontFemurLength Length of the front femur m
FrontTibiaLength Length of the front tibia m
HindFemurLength Length of the hind femur m
HindTibiaLength Length of the hind tibia m
KNEEFSpringConstant Front knee spring constant
KNEEFDampingConstant Front knee damping constant
KNEEHSpringConstant Hind knee spring constant
KNEEHDampingConstant Hind knee damping constant
FrontKneeOffset Front knee offset (position)
HindKneeOffset Hind knee offset (position)
RobotCenterOfMass Center of mass relative to Puppy ’s length
C Frequency Controller frequency Hz
C Phase lateral Lateral phase lag relative to 2π (1 equals 2π)
C Phase AP Anterior-posterior phase lag relative to 2π (1 equals 2π)
C Amp F Amplitude of the front leg (motor)
C Amp H Amplitude of the hind leg (motor)
C Offset F Reference position of the front motors
C Offset H Reference position of the hind motors

Table 2.1: Parameters available for the optimization

Since different body parameter values for every gait were likely to result, the insights
should be used to evolve a compromise morphology equally suitable for all different gaits.

It is expected that the parameter values found and the corresponding gaits can be
used as the base for more complex behavior such as avoiding obstacles or catching a
prey.

1Additional parameters are available, but they were not optimized.

5

2.2 A Side Note to Biology - Gaits in Quadrupeds

In nature, animals use different ways of locomotion to get from one location to another.
While some animals walk, others swim, crawl or fly. Some animals are even able to move
in two completely different ways. Many bugs can fly and walk. Salamanders can swim
as well as walk and there are even flying fish.

As one can see, nature came up with many different patterns of locomotion. Even
animals which usually just move on land can vary the way of locomotion. For instance,
four-legged animals like cats and dogs have different gaits like walking, trotting and
bounding. Although they are still using their legs to move forward, they change the way
they are using them.

But why are different gaits needed and what is the reason to switch from one gait to
another?

To answer this question, let us have a look at two different gaits of a house cat. When
a cat roams unhurriedly, it usually just walks slowly (walking gait). However, when it is
chased by a little child, it starts running as fast as possible to escape the expected threat
(bounding gait). As one can easily see, different situations require different speeds. And
since some gaits are more suitable for certain speeds, the animals switch between these
gaits.

In general, most animals always try to use the most energy-efficient gait for the desired
speed [HT81]. This means that if trotting needs less energy than walking at a certain
speed, then trotting is chosen. Figure 2.1 shows the relation between energy consumption
and speed in different gaits of a horse.

Figure 2.1: Energy consumption per traveled distance at different speeds of a horse
[KIJ03]

To summarize this, animals use different gaits in different situations. Depending on
the speed they try to achieve, they choose the most energy-efficient gait. Although other
criteria like stability might have an influence, too, it is assumed that energy-efficiency is
the main reason to switch between gaits.

More about gaits can be found in [JJRW07], [KIJ03] and [HT81].

6

2.3 Measurement of the Fitness

To get a measurement of the quality of a developed gait and robot, respectively, a so
called fitness value is used. Depending on the desired features of a gait, a different
approach to measure the fitness is chosen. For instance, there is speed, stability, the
energy consumption or any combination of them, to name just a few candidates.

In the following section we will look at three different methods taken into consideration
for our experiments.

2.3.1 Speed v

If we are interested in a fast gait, the most obvious measurement is the robot’s average
speed. The higher the speed v, the better the fitness of the gait.

In our experiments, we determined the speed by computing the traveled distance
d from the robot’s starting position to the robot’s position when the simulation was
finished and dividing it by the time t passed since the start of the simulation (v = d

t).
The corresponding pseudo-code is listed in listing 2.1.

double ca l cu la t eSpeed (void) {
double xTrans i t ion = robotEndPositionX − robotStar tPos i t ionX ;
double yTrans i t ion = robotEndPositionY − robotStar tPos i t ionY ;
double timePassed = endTime − startTime ;

double xyTrans i t ion = sq r t (pow(xTrans it ion , 2) + pow(yTrans it ion , 2)) ;
return xyTrans i t ion / timePassed ;

}

Listing 2.1: calculateSpeed()

The original code can be found in puppySupervisorController.cpp in the method cal-
culateCurrentSpeed().

2.3.2 Energy Consumption E

As in real animals, energy is one of the most important resources. Thus, it might be
a good idea to include the energy consumption in the fitness function. Unfortunately,
Webots does not provide a direct method to measure the energy consumption. Conse-
quently, the user has no choice but to implement it by himself.

Measurement of the Energy Consumption

Basically, there are two straight-forward approaches to measure the energy consumption:
where the energy flows in or out of the system. As shown in figure 2.2, there is just one
source of energy in our system (servo motor). Measuring the power at this point is the
easiest method. Another possibility, but more difficult to implement in Webots, would
be to measure the loss of energy by damping.

Webots allows to measure the current position (angle xt) as well as the current force
(torque ft) of a servo motor. Based on this data and the simulation interval ∆t, the
current power consumption Pt can be calculated. By adding up the power consumed in

7

Figure 2.2: Energy flow in the robot

every time step, we can compute the energy consumption E of the servo motor as shown
in equation 2.1.

E =
∑

t |∆t ∗ Pt| (2.1)

The unit for E is Joule (1J = kg∗m2

s2
= 1Ws).

Since Puppy uses a servo motor, there is no negative power2. Even when a force
supports the movement of the motor, power is consumed to slow down the movement.
For this reason the absolute value of the current power is used.

To compute the power consumption, two different methods were reviewed. The first
one is based on the laws of physics, the second one uses a servo specific constant cwpt
which means watts per torque.

Physical Power Measurement

∆x = xt − xt−1 (2.2)

v = ∆x
∆t (2.3)

Pt = v ∗ ft (2.4)

The unit for P is Watt (1W = kg∗m2

s3
= 1Js).

Watts per Torque Power Measurement

Pt = cwpt ∗ ft (2.5)

2Power cannot flow back to the battery

8

Comparision of the Power Measurement Methods

To compare these two methods in a qualitative way, two experiments were conducted.
In the first experiment a servo moved a mass by π

2 as shown in figure 2.3. The second
experiment was conducted with a bounding Puppy.

Figure 2.3: Design of experiment 1 (movement of a mass)

Experiment 1: Movement of a Mass Figure 2.4 shows the values measured for the
angle and torque. The servo motor accelerated the mass until it reached the maximal
velocity. In order to get realistic results, the following oscillation of the torque which is
caused by the ongoing correction of the position was filtered out by a low pass filter.3

angle

2 3 4 5
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
torque filtered

2 3 4

-1

-0.5

0

0.5

1

Figure 2.4: Measured data from experiment 1 (movement of a mass).

The calculation of the power and the energy consumption for both methods is shown
in figure 2.5. The constant parameter cwpt is hand tuned to a value of 0.53, such that
the energy consumption is the same for both methods. cwpt = 0.53 is a realistic value
of a servo motor. As one can see in figure 2.5, at least in this experiment both methods
are accurate.

3The low pass was realized by computing the average of four sequential values.

9

energy

2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

watts per torque

physical

power

2 3 4 5
0

0.2

0.4

0.6

0.8

1

watts per torque

physical

Figure 2.5: Comparision of the two methods for the power measurement in experiment
1. cwpt set to 0.53.

Experiment 2: Puppy In this experiment, a servo motor of the hind hip of Puppy
was used for the measurement. Figure 2.6 shows the values measured for the angle and
torque. Although it is not filtered, there is no oscillation on the torque. Apparently, the
servo does not oscillate if it is on-load operation. Thus, low pass filtering the torque is
not necessary in our case.

angle

2.50 2.75 3.00 3.25 3.50

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

torque

2.50 2.75 3.00 3.25 3.50
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

Figure 2.6: Measured data from experiment 2 (Puppy).

The calculation of the power and the energy consumption is shown in figure 2.7. Again,
the constant parameter cwpt is tuned by hand to a value of 7.7 . This is much more,
but still a realistic value. It corresponds with the fact, that Puppy uses a more powerful
servo.

As one can see in figure 2.7, after every period, the energy consumption results on
the same level for both methods although the power consumption shows different peaks.
This suggests both methods could be used.

10

energy

2.50 2.75 3.00 3.25 3.50
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

watts per torque

physical

power

2.50 2.75 3.00 3.25 3.50
0

5

10

15

20

watts per torque

physical

Figure 2.7: Comparision of the two methods for the power measurement in experiment
2. cwpt set to 7.7.

Conclusion

Both measurement methods provide good results but since no hand tuning is required
for the physical power measurement, it is easier to use. Nevertheless, the energy con-
sumption by itself is not a good fitness value. Since not moving at all uses the least
energy, a standing robot would be rated very good.

2.3.3 d
E

ratio

Although the energy consumption E by itself is not a good fitness value, it can definitely
be combined with other measurements to build a useful fitness value f. Especially if we
remember the curves of figure 2.1, the energy consumption seems to be an important
criteria.

Combining the energy consumption E with the traveled distance d allows for the
development of energy-efficient gaits without disregarding speed. Since this was one of
our goals, we looked closer at the possibilities to combine these two values and came up
with two different solutions.

The first idea was to divide the traveled distance by the consumed energy (dE) which
is the same as dividing speed by the power (vP):

f(v, P) =
v

P
=

d
t
E
t

=
d

E
= f(d,E)

In this case, an increase of the traveled distance results in a higher fitness value. So
does a decrease of the energy consumption. Additionally, an increase of the traveled
distance with the factor two, also results in a fitness value twice as high if the energy
consumption is kept on the same level. This makes sense and is exactly what we want.
Nevertheless, it is not a perfect solution. If we use the evolutionary algorithm with the
roulette wheel algorithm and we have one individual which is much better than the rest
(what is not unlikely in the first generation), this is probably the only one which will be

11

chosen as a parent for the next generation which results in a very small diversity. This
is not necessarily wrong and rather a problem of the optimization algorithm than of the
fitness value. But one needs to keep this in mind when one decides to use this fitness
value. Figure 2.8 shows the fitness function f(d,E) = d

E .

0
20

40
60

80
100

0
20

40
60

80
100

0

20

40

60

80

100

E

f(d,E) = d/E

d

fi
tn

e
s
s

Figure 2.8: f(d,E) = d
E

The second idea was to subtract the consumed energy from the traveled distance
(f(d,E) = d− E) as shown in figure 2.9.

As with the first idea, an increase of the traveled distance results in an increase of
the fitness value. An increase of the energy consumption results in a lower fitness value.
Intuitively, this is at least not wrong. Nevertheless, this fitness value turned out to be
not very useful. The problem is, that we do not know in which range the values of d and
E are going to be before we conduct the simulations. This leads to the problem, that
an increase of the energy consumption by factor two makes almost no difference to the
fitness value if the traveled distance has a much higher magnitude. This is demonstrated
in figure 2.10 and practically means that although we are using half as much energy in one
gait, it is just slightly more likely to survive in the evolutionary algorithm. Additionally,
we could get fitness values below zero which is not very handy. Although this could be
solved by adding the inverse energy consumption to the traveled distance (d + 1

E), it
would not solve the other problem.

As one can see, there is no silver bullet. But after balancing the advantages and
disadvantages, we decided to go for the ratio d

E . It is more useful and easier to handle in

combination with the optimization algorithms we used. Additionally, d
E is independent

of the simulation time t and thus allows the comparision between different simulations.

12

0
20

40
60

80
100

0

20

40

60

80

100
−100

−50

0

50

100

E

f(d,E) = d − E

d

fi
tn

e
s
s

Figure 2.9: f(d,E) = d− E

2.4 Exploration of Parameter Values for Different Gaits

In the first series of experiments, the goal was to find good parameter values for defined
gaits. The parameters were optimized using the existing framework for the improvement
of robots. [Hut08]

The basic design of the experiments was as follows:

1. The desired gait was specified by constraining the lateral and anterior-posterior
phase lag within a certain range.

2. By using an evolutionary algorithm with d
E as the fitness value, energy-efficient

body and controller parameters were found.

During these experiments, a simple feedforward sine-wave controller was used to con-
trol Puppy’s leg movements. The motor position of every leg thus is described by
equation 2.6.

A ∗ sin(2πf ∗ t+ ω) +D (2.6)

In the simulated version of Puppy, the front left leg is the reference (ω = 0).
Details on this controller and also on a CPG4 controller based on an adaptive oscillator

can be found in [Hut08].

4CPG: Central Pattern Generator

13

0
2

4
6

8
10

0

20

40

60

80

100
−20

0

20

40

60

80

100

E

f(d,E) = d − E

d

fi
tn

e
s
s

Figure 2.10: f(d,E) = d − E with different scales. (50 - 2) and (50 - 1) almost result
in the same fitness value, although we are using half as much energy in one
gait.

2.4.1 Walking Gait

The goal of this first experiment, was to explore the parameter values for an energy-
efficient walking gait. To make sure we would get a walking gait, we constrained the
lateral phase lag to 0.4 – 0.6. and the anterior-posterior phase lag to 0.65 – 0.85.

Since we were particularly interested in an energy-efficient gait, we chose the ratio
between the traveled distance and the consumed energy as the fitness value (f = d

E).
The other settings to this experiment were as follows:

Setting Value

Generations 750
Population 80
Number of parents 8
Parent selection roulette
Elitism On
CHANGEPROBABILITY 5.56%

With a fitness value of 2.13513 (d = 5.95674, E = 2.78987), individual 62 of generation
561 turned out to be the fittest one:

14

Parameter Range Fittest

FrontFemurLength 0.05 0.12 0.108417
FrontTibiaLength 0.05 0.12 0.0598935
HindFemurLength 0.05 0.12 0.114643
HindTibiaLength 0.05 0.12 0.0760794
KNEEFSpringConstant 0.1 0.7 0.696502
KNEEFDampingConstant 0.001 0.01 0.00550196
KNEEHSpringConstant 0.1 0.7 0.593708
KNEEHDampingConstant 0.001 0.01 0.00101491
FrontKneeOffset 0.3 1.2 0.797224
HindKneeOffset 0.3 1.2 0.67988
RobotCenterOfMass -1.0 1.0 0.525413
C Frequency 0.5 4.0 1.69495
C Phase lateral 0.4 0.6 0.501812
C Phase AP 0.65 0.85 0.846008
C Amp F 0.5236 1.57 0.562042
C Amp H 0.5236 1.57 0.785213
C Offset F -0.698 0.698 0.311935
C Offset H -0.698 0.698 -0.0831453

Figure 2.11 shows this individual in Webots.

Figure 2.11: Fittest walking individual in Webots

Although several individuals with a similar or even the same fitness value occured up
to the 750th generation, none of them reached a better fitness value.

Apparently, long femurs are an advantage and the knee spring constants were almost
maximized. The center of mass is set quite far to the front and the body itself is tilted.
With an anterior-posterior phase lag of 0.846008, the gait almost looks like a pace gait
and while walking, its front feet often touch the ground.

15

Systematic Exploration of the Controller Frequency

Since we were interested whether we can vary the speed of the gait simply by modifying
the frequency, we also conducted a systematic experiment. By systematically varying
the frequency, we wanted to find out, how frequency, speed and energy consumption are
related.

Apart from the frequency, we fixed all parameters to the above values.
Figure 2.12 shows the behavior of the energy consumption and speed when the fre-

quency is increased. As one can see, the fitness reaches its maximum around 1.7Hz.
Between 1 and 2Hz the robot is stable5 but then suddenly becomes unstable.

1 2 3 4
0

2

4

6

8

10

12

14

16

18

Energy

TraveledDistance

1 2 3 4
0

0.5

1

1.5

2

2.5

FITNESS

Figure 2.12: Systematic variation of the frequency in the walking gait. Tumbling robots’
fitness value is set to 0.

5With ”stable”, we mean a robot which can vary its frequency and amplitude without tumbling.

16

2.4.2 Trotting Gait

The experiment for the exploration of the parameter values for an energy-efficient trot-
ting gait was done in a similar way as the experiment for the walking gait. To make sure
we would get a trotting gait, we constrained the lateral and anterior-posterior phase lag
to 0.45 – 0.55.

Again, we chose the ratio between the traveled distance and the consumed energy as
the fitness value (f = d

E).
The other settings to this experiment were as follows:

Setting Value

Generations 750
Population 80
Number of parents 8
Parent selection roulette
Elitism On
CHANGEPROBABILITY 5.56%

With a fitness value of 1.43427 (d = 5.80094, E = 4.04452), individual 53 of generation
127 turned out to be the fittest one:

Parameter Range Fittest

FrontFemurLength 0.05 0.12 0.0858701
FrontTibiaLength 0.05 0.12 0.0674084
HindFemurLength 0.05 0.12 0.115045
HindTibiaLength 0.05 0.12 0.0667877
KNEEFSpringConstant 0.1 0.7 0.576192
KNEEFDampingConstant 0.001 0.01 0.00563574
KNEEHSpringConstant 0.1 0.7 0.634036
KNEEHDampingConstant 0.001 0.01 0.00405694
FrontKneeOffset 0.3 1.2 0.800005
HindKneeOffset 0.3 1.2 1.00625
RobotCenterOfMass -1.0 1.0 0.599965
C Frequency 0.5 4.0 2.37565
C Phase lateral 0.45 0.55 0.502542
C Phase AP 0.45 0.55 0.540277
C Amp F 0.5236 1.57 0.534679
C Amp H 0.5236 1.57 1.3026
C Offset F -0.698 0.698 0.0595042
C Offset H -0.698 0.698 0.0435751

Figure 2.13 shows this individual in Webots.
The fittest trotting individual has a very similar body to the one evolved for the

walking gait. Compared to the previously found walking gait, the trotting gait has a

17

Figure 2.13: Fittest trotting individual in Webots

very low fitness value. It consumes about 40% more energy for the same distance. Again,
its front feet often touch the ground while trotting.

Systematic Exploration of the Controller Frequency

As in the experiment for the walking gait, we conducted a systematic experiment to find
out how frequency, speed and energy consumption are related.

Apart from the frequency, we fixed all parameters to the above values.
As one can see in figure 2.14, the evolved trotting Puppy is much more stable in terms

of frequency than the walking version.

2.4.3 Bounding Gait

As in the other experiments, we made sure we would get a bounding gait by constraining
the lateral phase lag to 0.0 and the anterior-posterior phase lag to 0.4 – 0.6.

Again, we chose the ratio between the traveled distance and the consumed energy as
the fitness value (f = d

E).
The other settings to this experiment were as follows:

18

1 2 3 4
0

2

4

6

8

10

Energy

TraveledDistance

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

FITNESS

Figure 2.14: Systematic variation of the frequency in the trotting gait. Tumbling robots’
fitness value is set to 0.

Setting Value

Generations 750
Population 80
Number of parents 8
Parent selection roulette
Elitism On
CHANGEPROBABILITY 5.56%

With a fitness value of 2.58945 (d = 6.07075, E = 2.34442), individual 15 of generation
392 turned out to be the fittest one:

19

Parameter Range Fittest

FrontFemurLength 0.05 0.12 0.107495
FrontTibiaLength 0.05 0.12 0.0593474
HindFemurLength 0.05 0.12 0.0785541
HindTibiaLength 0.05 0.12 0.0816153
KNEEFSpringConstant 0.1 0.7 0.695015
KNEEFDampingConstant 0.001 0.01 0.0089879
KNEEHSpringConstant 0.1 0.7 0.688352
KNEEHDampingConstant 0.001 0.01 0.00114522
FrontKneeOffset 0.3 1.2 0.478145
HindKneeOffset 0.3 1.2 0.951577
RobotCenterOfMass -1.0 1.0 0.318758
C Frequency 0.5 4.0 3.39166
C Phase lateral 0.0 0.0 0
C Phase AP 0.4 0.6 0.400149
C Amp F 0.5236 1.57 0.525028
C Amp H 0.5236 1.57 0.857557
C Offset F -0.698 0.698 -0.261618
C Offset H -0.698 0.698 -0.290135

Figure 2.15 shows this individual in Webots.

Figure 2.15: Fittest bounding individual in Webots

The bounding individual reaches the highest fitness value of all individuals analyzed
so far. Compared to the best trotting and walking individuals, it has a more upright
posture and shorter hind femurs.

Since the anterior-posterior phase lag was minimized, we assume it would make sense
to allow for a smaller anterior-posterior phase lag in future experiments.

20

Systematic Exploration of the Controller Frequency

To find out how frequency, speed and energy consumption are related, we systematically
varied the frequency while the other parameters were fixed to the above values.

As figure 2.16 demonstrates, the bounding Puppy behaves very instable around the
highest fitness value but is stable in the range from 1 to 2Hz.

1 2 3 4
0

2

4

6

8

10

Energy

TraveledDistance

1 2 3 4
0

0.5

1

1.5

2

2.5

FITNESS

Figure 2.16: Systematic variation of the frequency in the bounding gait. Tumbling
robots’ fitness value is set to 0.

2.5 Compromise Morphology

So far, several experiments were conducted to find good body and controller parameters.
As a reminder, the basic design of these experiments was as follows:

1. The desired gait was specified by constraining the phase lags within a certain range.

2. By using an evolutionary algorithm, suitable body and controller parameters were
found.

21

This design of the experiments resulted in robots which are very good at a specific
gait but are not necessarily good at other gaits or not even stable within the same gait
(robot tumbles as soon as the frequency is varied).

While this type of experiment allows us to draw conclusions for the relationship of
parameters under certain conditions, it does not allow us to generate robots which
perform well in all different gaits and are guaranteed to be stable within a certain gait.

Since the aim of the second task was to develop a robot which performs well in all
gaits, we designed a new type of experiment to find a compromise morphology for the
robot.

2.5.1 Design of the New Experiments

The new experiment should provide the following results:

• A robot which performs well and is stable in all three gaits.

• The robot should be able to vary the speed within a gait by adjusting the frequency.

To summarize it, we need a new, holistic approach. The same robot needs to be able
to perform well in all different gaits and must be able to vary the speed within a gait.
One possible design of an experiment which could achieve the desired results is described
in the box on page 22.

A Specific Experiment for Puppy

1. Divide the parameters into body and controller parameters. Controller parameters
can be changed during the lifetime of a robot, body parameters can not.

2. Birth of a robot with a given body.

a) This robot is now in a phase we call “childhood”. During its childhood, it
should learn to walk, trot and bound. To learn these different gaits, the robot
has a certain amount of “time”. Within a gait, the robot must be able to
vary the speed by systematically varying the frequency.

b) Just the robots which perform well in all gaits are likely to survive.

This idea results in a three-level experiment. The highest level might be an evolutionary
algorithm exploring the body parameters. For every given body, a simulated annealing
algorithm could try to find acceptable gaits by exploring the controller parameters and
within each gait, the controller frequency could be systematically changed within a
certain range to figure out which gaits are stable.
The results of every level are then returned to the experiment on the higher level in a
way that the higher level can include it in its decisions (e.g. by a fitness value).
This design of the experiment is also illustrated in figure 2.17.

22

Main experiment

(evolut ionary algori thm)

Explores body parameters

Sub experiment 1

(simulated annealing)

Explores controller parameters for

"walk ing"

Sub experiment 2

(simulated annealing)

Explores controller parameters for

" t rot t ing"

Sub experiment 3

(simulated annealing)

Explores controller parameters for

"bounding"

This is done for each individual

Subsub experiment

(systematic)

Explores the frequency range

1. Iteration

frequency x ... frequency z

2. Iteration

1. Iteration

Figure 2.17: Design of a complex experiment

Although this biologically inspired experiment seems reasonable, it has a huge draw-
back: Due to its massive demand of computing power, it can not be realized. A small
calculation shows this in detail:

ipg: individuals per generation (evolutionary algorithm)
spg: steps per gait (simulated annealing algorithm)
ss: systematic steps (systematic algorithm)
sps: seconds per simulation (approximately 3 seconds)

500generations ∗ 50ipg ∗ 3gaits ∗ 100spg ∗ 10ss ∗ 3sps = 225′000′000s

= 3′750′000m

= 62′500h

Obviously, evolution in nature is a parallel process for a reason.
By exchanging the evolutionary algorithm with a simulated annealing algorithm, the

number of robots to simulate would decrease dramatically:

100steps ∗ 3gaits ∗ 100spg ∗ 10ss ∗ 3sps = 900′000s

= 15′000m

= 250h

With an execution time of less than two weeks, this experiment can definitely be con-
ducted and with some fine-tuning, it would probably be possible to reduce the execution
time to less than five days.

23

Unfortunately, the design of the framework did not allow to conduct experiments
as a part of another experiment and thus it was impossible to conduct the suggested
experiments.

Consequently, we had the choice between extending the old framework or writing a
new program from scratch. After weighing the pros and cons, we came to the conclusion
to write an entirely new program for the optimization of the robot’s parameters.

2.6 Summary

For all gaits, energy-efficient parameter values were found. While the trotting gait is
stable within the entire frequency range, especially the bounding gait is very unstable
for frequencies higher than 2Hz.

In general, smoothly moving individuals achieved better fitness values than abruptly
moving ones.

The walking gait found is very similar to the pace gait. A more characteristic walking
gait could be achieved by constraining the anterior-posterior phase lag to a smaller range
around 0.75.

The evolved walking and trotting individual both lack ground-clearance. Since most
surfaces are uneven, this could lead to very instable behavior if transferred to a real
Puppy.

Conducting some tests, we accidentally discovered the following walking version of
Puppy :

Parameter Value

FrontFemurLength 0.077682
FrontTibiaLength 0.088447
HindFemurLength 0.117036
HindTibiaLength 0.061377
KNEEFSpringConstant 0.399338
KNEEFDampingConstant 0.002245
KNEEHSpringConstant 0.229442
KNEEHDampingConstant 0.004256
FrontKneeOffset 0.857459
HindKneeOffset 0.695156
RobotCenterOfMass 0.633376
C Phase lateral 0.485147
C Phase AP 0.810948
C Amp F 0.558569
C Amp H 0.828399
C Offset F -0.014544
C Offset H 0.038788

As figure 2.18 shows, it features a very stable walking gait. In future experiments, sta-

24

ble gaits could be promoted by varying the frequency within a simulation and including
it in the fitness value. Additionally, varying the amplitude with the frequency possibly
brings improvement.

1 2 3 4
0

2

4

6

8

10

12

Energy

TraveledDistance

1 2 3 4
0

0.5

1

1.5

2

FITNESS

Figure 2.18: Stable walking version of Puppy. Tumbling robots’ fitness value is set to 0.

For further analysis, a video and the experiment results of each gait can be found in
the appendix.

25

3 Vidyaa – Optimization Made Easy

3.1 Overview

Based on the insights from the development of gaits for the Puppy robot, we developed a
new program called Vidyaa for the optimization of parameter values. What the individ-
ual parameters represent is of no interest to the program itself, which allows to optimize
a neural network as well as the hardware parameters of a certain machine or any other
set of parameters.

To distinguish how good a set of parameter values is, the parameters are tested using
an external, user-defined program. This simulation software then returns a so called
fitness value which is used by Vidyaa to decide on its further steps.

The optimization algorithm used can be freely selected by the experimenter, and unlike
most other optimization tools, Vidyaa allows the combination of several algorithms for
the optimization. For instance, it is possible to optimize some parameters with an
evolutionary algorithm and some other parameters with a simulated annealing algorithm.

The user defines the optimization task by configuring so called experiments. These
experiments can be combined in a hierarchical structure which allows the optimization
of parameters on different levels with different algorithms.

In reference to its ability of using optimization algorithms to optimize parameters, we
called it Vidyaa – the Sanskrit expression for learning, knowledge science.

3.2 Requirements

Before we started with the actual implementation of Vidyaa, we made a list of require-
ments in which the following use case was identified as the primary use case:

A user would like to optimize different parameter values of any system. Thus,
he designs an experiment by specifying which optimization algorithms to use
on which parameters. By defining a hierarchical experiment, the user is also
able to conduct an experiment within another experiment. Or to put it
differently, he is able to nest optimization tasks.

After he has done the configuration, he starts the experiment and waits until
it is finished. During the experiment, all intermediate results and parameter
values of every step are saved into a logfile in order to be able to reproduce
the results.

After the experiment finishes, he analyzes the results by evaluating the col-
lected data with adequate tools.

26

The conducted FURPS analysis1 also identified the need for a centralized configura-
tion, easy supportability and extensibility as the major requirements. In addition, a user
and programmer guide were expected.

Additional requirements and the details of the FURPS analysis can be found in the
appendix.

3.3 Implementation

The following sections are just a summary. A detailed documentation on Vidyaa is
provided in the Programmer- and User Manual in Vidyaa – Optimization Made Easy
(see appendix).

3.3.1 Basic Idea

In Vidyaa, the user defines the optimization task by configuring so called experiments.
An experiment contains the parameters to optimize and the algorithm to use for the
optimization. Experiments can be combined in a hierarchical structure. From this
follows that for every step of an experiment, the entire sub-experiment is conducted,
too. This is illustrated in figure 3.1.

Figure 3.1: The optimization process

The experiment on the first level creates a set of parameter values and passes them to
its sub-experiment. The sub-experiment then extends this set of parameter values and

1FURPS : Functional Requirements, Usability, Reliability, Performance and Supportability

27

finally passes them to a simulator (or test program), which tests the current values and
returns a fitness value. Based on the fitness value, the sub-experiment decides on its next
step. When the sub-experiment is finished, it returns a fitness value to the experiment
on the next higher level, which then also decides on its next step.

To put it differently, experiments pass their current parameter values to their sub-
experiments. That is, a set of parameter values is passed down the hierarchy and ends
with a test (simulation) of the parameter values. Every level in between can add or
modify something.

3.3.2 Architecture

When Vidyaa was designed, corresponding to the requirements, the main objectives were
extensibility, flexibility and ease of use. The implemented architecture directly originates
from these objectives and many characteristics are quite easy to understand when this
is kept in mind.

One of the most basic principles is the separation of the actual optimization from the
testing of the parameters. This increases the flexibility as well as the extensibility of the
software.

Furthermore, setting up optimization tasks was made easier for the user by choosing
XML as the format for a central configuration file. At the same time, existing XML
parsers made it easy for a programmer to interprete the configuration file.

Concerning Vidyaa’s internals, it has been tried to keep it as simple as possible,
without cutting back on flexibility or functionality.

Basically, in Vidyaa, an optimization task is regarded as being an Experiment. Each
experiment can contain other experiments, which allows the nesting of optimization
tasks.

3.4 Features

With Vidyaa we developed an easily extensible tool for the optimization of parameter
values. Its most important features are:

• Stable platform for optimization tasks.

• Centralized configuration in an XML file.

• Human- and machine readable logfile.

• Different log levels configurable.

• Nesting of optimization tasks.

• Separation of the test/simulation program and the actual optimization.

• Availability of two optimization algorithms (simulated annealing, evolutionary al-
gorithm).

28

• Availability of one algorithm for the systematic testing of parameter values.

• Easily extensible with own optimization algorithms or experiment types.

• Detailed documentation (User Manual as well as a Programmer Manual) provided.

To allow contributions from others, Vidyaa has been published under http://vidyaa.
origo.ethz.ch as open source software (GPL).

3.5 Roadmap

Although Vidyaa is already of great value, there are still many ways to extend and im-
prove it in future versions. Table 3.1 shows a few features considered useful or important
by the authors.

Item Complexity

Ports for other platforms low
Validation of the configuration file. low
Enhancement of the data logger low

New experiment type ”Serial”* medium
Tool for the analysis of the logfile medium
Automated unit tests for Vidyaa medium
Parallelization of optimization tasks very high
Network-compatible version very high
New algorithms depending on the algorithm

Table 3.1: Vidyaa Roadmap
*The idea of the experiment type ”Serial” is as follows: A Serial Experiment contains a
list of experiments, of which the best parameters of one experiment are used as the base
for the next experiment.

29

http://vidyaa.origo.ethz.ch
http://vidyaa.origo.ethz.ch

4 Conclusion

In this work, a simulated model of the robot was used to facilitate optimization of the
body and controller parameters.

Using evolutionary algorithms, we found body and controller parameters for Puppy
which feature a high energy efficiency for each of the three gaits ”walking”, ”trotting” and
”bounding”. The evolution of a given gait was achieved by constraining the range of the
possible phase lag between the leg movements. By defining the fitness value as the ratio
between traveled distance d and the energy consumption E (f(d,E) = d

E), we optimized
for the maximal energy efficiency. The development of defined gaits by constraining
the phase lag is based on the assumption that our quadruped robot would use the
same patterns of locomotion as four-legged animals. However, this needed experimental
verification. By freeing the phase lag, one could find out which gaits the robot would
evolve by itself. It might also be possible, to govern the evolution of specific gaits by
differently weighting parts of the fitness function. For instance, we assume faster gaits
would evolve when the fitness function f(d,E) = d2

E would be used since the traveled
distance would be of higher magnitude than the energy consumption.

Since for each gait, different body parameters turned out to be suitable, one should
try to find a compromise morphology. Using Vidyaa and based on the suggested design
of the experiments in section 2.5, this should be possible.

One unique feature of the evolved gaits is that they have a very low ground-clearance.
Since most surfaces are uneven, this could make the gaits unstable if transferred to a real
robot. Conducting the same experiments with a higher surface friction or adding small
pebbles in the simulation could help to increase the ground-clearance in the evolved
gaits.

In our experiments, a simple sine-wave generator was used as the controller for the
leg movements. It might be possible to however achieve much better gaits by using a
CPG controller and including sensory feedback. This could also help with the ground-
clearance problem since irregular movements of the legs would be possible.

Finally, the robot should know when to switch between the gaits. Based on the
measurement of the energy, this would result in an energy efficient behavior of the
robot. Possibly, this could be implemented using a winner-take-all neural network.

Concerning Vidyaa, maintenance and further enhancement has beend planned. Paral-
lelization of the optimization algorithms would help a lot to decrease the execution time
of optimization processes. Together with a network-compatible version, this could make
Vidyaa to a powerful tool to solve optimization problems. To allow contributions of oth-
ers, Vidyaa has been published under http://vidyaa.origo.ethz.ch including its source
code. Currently, it has been tested under Linux but porting it to other platforms can
be easily done.

30

Bibliography

[HT81] D. F. Hoyt and C. R. Taylor. Gait and the energetics of locomotion in horses.
Nature, 292:239–240, July 1981.

[Hut08] Stefan Hutter, 2008. Co-evolution of Morphology and Controller of a Simu-
lated Underactuated Quadruped Robot using Evolutionary Algorithms.

[IP04] Fumiya Iida and Rolf Pfeifer. ”Cheap” Rapid Locomotion of a Quadruped
Robot: Self-Stabilization of Bounding Gait. In Proceedings of the Eigth Con-
ference on Intelligent Autonomous Systems, IOS Press: Amsterdam, pages
642–649, 2004.

[JJRW07] Thilo Pfau Justine J. Robilliard and Alan M. Wilson. Gait characterisation
and classification in horses. The Journal of Experimental Biology, 210:187–
197, 2007.

[KIJ03] D. C. Kar, K. Kurien Issac, and K. Jayarajan. Gaits and energetics in ter-
restrial legged locomotion. Mechanism and Machine Theory, 38(4):355 – 366,
2003.

[Lun04] Max Lungarella. Exploring Principles Towards a Developmental Theory of
Embodied Artificial Intelligence. PhD thesis, University of Zurich, Switzer-
land, 2004.

[RI08] Ludovic Righetti and Auke Jan Ijspeert. Pattern generators with sensory
feedback for the control of quadruped locomotion. In 2008 IEEE International
Conference on Robotics and Automation, 2008.

[wik09] Simulated annealing. http://en.wikipedia.org/wiki/Simulated_

annealing, 05 2009.

31

http://en.wikipedia.org/wiki/Simulated_annealing
http://en.wikipedia.org/wiki/Simulated_annealing

	Introduction
	Overview
	Preliminary Work
	Puppy – A Quadruped Robot
	Framework for the Improvement of Robots
	Additional Work Done

	Development of Gaits
	Objective
	A Side Note to Biology - Gaits in Quadrupeds
	Measurement of the Fitness
	Speed v
	Energy Consumption E
	 dE ratio

	Exploration of Parameter Values for Different Gaits
	Walking Gait
	Trotting Gait
	Bounding Gait

	Compromise Morphology
	Design of the New Experiments

	Summary

	Vidyaa – Optimization Made Easy
	Overview
	Requirements
	Implementation
	Basic Idea
	Architecture

	Features
	Roadmap

	Conclusion
	Appendix

