
Master Thesis

Upcompiling Legacy Code to Java

Author
Urs Fässler

Supervisor
ETH Zürich UC Irvine

Prof. Dr. Thomas Gross Prof. Dr. Michael Franz
Dr. Stefan Brunthaler
Dr. Per Larsen

September 7, 2012

Urs Fässler: Upcompiling Legacy Code to Java, © September 7, 2012

This work is made available under the terms of the Creative Com-
mons Attribution-ShareAlike 3.0 license, http://creativecommons.

org/licenses/by-sa/3.0/.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

A B S T R A C T

This thesis investigates the process of “upcompilation”, the transfor-
mation of a binary program back into source code. Unlike a decom-
piler, the resulting code is in a language with higher abstraction than
the original source code was originally written in. Thus, it supports
the migration of legacy applications with missing source code to a
virtual machine. The result of the thesis is a deeper understanding of
the problems occurring in upcompilers.

To identify the problems, we wrote an upcompiler which transforms
simple x86 binary programs to Java source code. We recover local
variables, function arguments and return values from registers and
memory. The expression reduction phase reduces the amount of vari-
ables. We detect calls to library functions and translate memory al-
location and basic input/output operations to Java constructs. The
structuring phase transforms the control flow graph to an abstract
syntax tree. We type the variables to integers and pointers to integer.
In order to optimize the produced code for readability, we developed
a data flow aware coalescing algorithm.

The discovered obstacles include type recovery, structuring, handling
of obfuscated code, pointer representation in Java, and optimization
for readability, to only name a few. For most of them we refer to
related literature.

We show that upcompilation is possible and where the problems are.
More investigation and implementation effort is needed to tackle spe-
cific problems and to make upcompilation applicable for real world
programs.

iii

A C K N O W L E D G E M E N T S

I like to thank Professor Michael Franz for the invitation to his group
and making this work possible. A special thank goes to Stefan Brun-
thaler and Per Larsen for the discussions and suggestions. I thank
Professor Thomas Gross for enabling the work. Finally, I like to thank
the supporters of free software for providing all tools needed for this
work.

v

C O N T E N T S

1 introduction 1

1.1 Problems . 1

1.2 Scope . 3

2 related work 5

3 implementation 7

3.1 Low level phases . 7

3.1.1 Disassembler . 8

3.1.2 Variable linking 9

3.1.3 Function linking 9

3.1.4 Condition code reconstruction 10

3.1.5 Stack variable recovery 11

3.1.6 Expression reduction 13

3.1.7 Function replacement 14

3.1.8 Replacing arrays with variables 15

3.1.9 SSA destruction 15

3.2 High level phases . 16

3.2.1 Structuring . 17

3.2.2 Linking . 17

3.2.3 Statement normalization 19

3.2.4 Reconstructing types 19

3.2.5 Pointer access encapsulation 20

3.2.6 Coalescing . 21

3.2.7 Expression normalization 22

3.2.8 Generating Java code 22

4 evaluation 25

4.1 Discussion . 25

4.1.1 Function pointers 25

4.1.2 Function argument reconstruction 26

4.1.3 Non returning functions 26

4.1.4 Jump tables . 27

4.1.5 Structuring . 28

4.1.6 Stack variables 28

4.1.7 Library calls . 29

4.1.8 Tail calls . 29

4.1.9 Aliasing of registers 29

4.1.10 SSA as intermediate representation 30

4.1.11 Coalescing unrelated variables 30

4.1.12 Semantic gap . 31

vii

4.1.13 Obfuscation and optimization 32

4.1.14 Functional programming languages 33

4.2 Performance . 35

4.2.1 Upcompiler . 35

4.2.2 Programs . 36

5 conclusion and future work 39

5.1 Conclusion . 39

5.2 Future Work . 40

5.2.1 Type recovery . 40

5.2.2 Generality . 40

5.2.3 Optimization and code metrics 41

a bibliography 43

b listings 47

c list of figures 49

d appendix 51

d.1 Glue code . 51

d.2 Testcases . 52

d.2.1 fibloop . 52

d.2.2 fibrec . 58

d.2.3 fibdyn . 60

d.2.4 bubblesort . 63

viii

1
I N T R O D U C T I O N

Legacy applications without source code become a considerable prob-
lem when their target processors are no longer available. Cross-
compilation or binary translation, i.e., translating the binary appli-
cation to another instruction set architecture (ISA), are not sustain-
able solutions, as the target architecture also becomes obsolete even-
tually.

In contrast, the Java virtual machine (JVM) decouples the source code
from any particular processor. The JVM itself runs on a wide range of
processors. As the specification of the JVM as also the Java language
are publicly available and there exist free and open source implemen-
tations of the JVM and Java compiler, it provides a future proof archi-
tecture. Moreover, the language is widely used in the industry and
academic communities. If we are able to translate binaries into Java
source code, they do not only compile for the JVM but also allows
programmers to fix, improve or extend the applications.

In this thesis we investigate the process of “upcompilation”. An up-
compiler translates a binary program into source code of a language
of higher abstraction than the program was originally written in. In
comparison to decompilation, upcompiler face the additional chal-
lenges of bridging a broader semantic gap. The gain of this thesis is
a deeper understanding of the problems occurring when building a
real world upcompiler.

1.1 problems

Disassembly and decompilation are already difficult problems since a
compiler destroys a lot of information. As we want to upcompile, we
do not only have the same problems but also new ones. The reason
is that we want to go to an higher abstraction than the code was
before compiling. Figure 1.1 on the following page shows the levels
of machine abstraction of different forms of a program.

1

high

low

ab
st

ra
ct

io
n C

Machine Code
Assembly

C

Java

compiler

disassembler

decompiler

upcompiler

Figure 1.1: Machine code abstraction level. The reconstructed C code
on the right side is on a lower abstraction than the original
because information was destroyed during compilation.

On the disassembly level, we have to distinguish between code and
data. In the general case, it is considered as a hard problem [18].
Since we have the entry point to the binary and follow all paths, we
avoid this problem. Disassembly the binary gets difficult if code ob-
fuscation is used or the code is self modifying.

Decompilation is more difficult as we want to recover variables, their
types, and high level language constructs. A value can be stored in a
register, memory or both. But not every value in a register or memory
represents a variable. As the machine needs to store the result of ev-
ery operation, several registers are used. It is not clear which values
belonged to a variable and which ones are for temporary storage. In
the absence of debugging information, only a small amount of infor-
mation about types is available. This includes the size of an integer
or if it is a signed value. Moreover, there is no explicit information
about composite types like arrays or records.

Optimization frequently moves code around, which makes the recov-
ery of high level language constructs difficult or impossible. Never-
theless, since C has a low machine code abstraction, several problems
are not so hard if we do not care about readability of the resulting
code. Otherwise, optimizations like function inlining and loop un-
rolling have to be detected and reverted. Furthermore, the compiler
or linker add helper code to the program. Such code has to be de-
tected and removed, too.

Upcompilers have the additional challenge of bridging the seman-
tic gap. This is the problem that a language of higher abstraction
has more constraints than the language of the original program. For
example, C or Object Pascal allows to access every memory address
with a pointer of any type. In Java or Ruby, neither accessing memory
nor arbitrary type casts are possible.

2

1.2 scope

As we have limited resources, we restricted the possible set of input
programs. This allows us to implement all parts of the upcompiler.

We only worked with 32-bit x86 binaries compiled by Clang, a C
compiler with LLVM as back end. All binaries need to be in the Ex-
ecutable and Linkable Format (ELF). We only support dynamically
linked libraries, and only a small number of library calls. Those are
printf and scanf with simple static format strings as well as malloc
and free. Multi-threading, signals and function pointers are not sup-
ported. Parameters to functions have to be passed on the stack. Sup-
ported data types are signed integers and pointers to integers.

Obfuscated code, hand written assembly code, computed jumps, just-
in-time compilers, self modifying code and similar techniques are not
considered in our implementation.

3

2
R E L AT E D W O R K

First decompilers are mentioned in the 1960’s by Halstead [19]. Back
then, they had the same motivation as we have for the upcompiler:
It was used to guide the migration of programs to a new computer
generation.

Modern decompilation is based on the work of Cifuentes [11]. Since
then, findings in research and industry changed and improved com-
pilers. Most notably, the static single assignment form (SSA) [15] is
used by many modern compilers. Its usefulness for decompilation is
described by Mycroft [25] and Emmerik [18].

Upcompiling binaries to Java or similar targets is a new research topic.
Nevertheless, it should be possible to reach the same goal with the
usage of several existing tools. As there exists a lot of research on
decompilers, it seems obvious to first decompile a binary and then
use a C to Java converter. There exist decompilers like Boomerang [1]
or REC [2] producing C like code, and C to Java converter like C2J
[3], but they all seem to be immature or incomplete.

It should be possible to use tools, such as RevGen/s2e [10] to de-
compile binaries to LLVM IR. From there, LLJVM [26] produces Java
bytecode. Many Java decompilers exist; some of them may be able to
work as the last step to retrieve Java source code. Unfortunately, both
RevGen and LLJVM are still prototypes.

NestedVM [7] is able to translate MIPS binaries to Java Bytecode.
The authors choose MIPS because of “the many similarities between
the MIPS ISA and the Java Virtual Machine” (Alliet and Megacz [7,
page 3]). Since our motivation is to upcompile legacy applications for
any processor architecture, we can not rely on this solution.

5

3
I M P L E M E N TAT I O N

The upcompiler is written in Java using additional libraries. ELF
parsing is based on the source code of Frida IRE [20]. DiStorm3 [16]
disassembles the binary. JGraphT [4] provides the graph infrastruc-
ture.

The translation from machine code to Java is split up into several
phases. Every phase can perform multiple passes over the internal
representation. We use a control flow graph (CFG) for the low level
representation and later an abstract syntax tree (AST) for the high
level representation.

We describe the phases of the upcompiler in the following sections.
For practical reasons, they are not strictly in the same order as they
are implemented. In most sections, a listing or figure illustrates code
snippets before and after the phase. At the end of every section, we
indicate the relevant classes of the upcompiler with an arrow (⇒).

3.1 low level phases

The whole program consists of a set of functions. Every function is
represented as a CFG where the vertices are basic blocks. There is
exactly one vertex with an in-degree of zero, the entry point of the
function. A function has one or more exit points. The registers and
recovered variables are in SSA form.

Every basic block is constructed in the same way. It is identified by
the memory address of its first instruction, even if this instruction
is deleted during the process. At the beginning, zero or more phi
functions are allowed. They have a key/value pair for every incoming
edge of the basic block. The key is the ID of the source basic block
of the edge and the value is the expression which is used when the
control flow transfers from the mentioned basic block. Then, zero
or more statements follow. At the end, there is exactly one jump or
return statement.

7

The syntax is intuitive, only the jump statement needs a description.
It takes two arguments, an expression and a list of basic block iden-
tifiers. The expression is evaluated and that value is used as index
for the list. Finally, the control flow transfers to the basic block at the
mentioned index. This representation models all occurring jumps.
Listing 3.1 on the current page shows the use cases.

1 jump(0, [BB_N])

2 jump(a < 10, [BB_F, BB_T])

3 jump(a, [BB_0, BB_1, BB_2])

Listing 3.1: The 3 different use cases of the jump statement. Line 1

contains an unconditional jump, line 2 represents a jump
depending on a boolean condition and line 3 contains a
multi-branch.

3.1.1 Disassembler

First, the upcompiler disassembles and splits the binary program into
basic blocks. The disassembly library provides the decoded assembly
instructions which are directly translated into our intermediate rep-
resentation.

In addition, we load the dynamic library section for the later resolu-
tion of addresses to library function names as discussed in Section
4.1.7 on page 29.

We detect all functions of the call graph with the entry point of the
binary as the root vertex. Whenever a call instruction occurs during
parsing, we add the destination address to a work queue. Already
parsed functions and library functions are excluded.

Basic blocks of a function are parsed similarly. The first basic block
starts at the address of the function. For a conditional jump, we put
the address of the following instruction and the jump destination to
a work queue. If the jump is unconditional, only the destination
address is added. Those jump instructions also terminate the basic
blocks. In addition, function return or program abort instructions
also terminate a basic block. If a jump instruction points into an
already parsed basic block, we split that basic block at the destination
address. Before parsing an instruction, we check if there is already a
basic block starting with this instruction. If so, we add a jump to that
basic block. We discuss the handling of jump tables in Section 4.1.4
on page 27.

8

Listing 3.2 on this page is an example of a basic block after this
phase.

⇒ phases.cfg.Disassembler

1 0x8048480:

2 EDX:22 := ’ESI’

3 ESI:23 := ’ECX’

4 ESI:24, C:24, P:24, A:24, Z:24, S:24, O:24 := (’ESI’ + ’EDX’)

5 EDI:25, P:25, A:25, Z:25, S:25, O:25 := (’EDI’ - 0x1)

6 ECX:26 := ’EDX’

7 jump((’Z’ == 0x0), [0x804848b, 0x8048480])

Listing 3.2: A basic block after the disassembly phase.

3.1.2 Variable linking

In this phase we link all variables by converting them to SSA. To get
the positions for the phi functions, we implemented a generic domi-
nator tree algorithm as described by Cooper et al. [14] and a generic
dominance frontier algorithm as in Cooper and Torczon [13].

We only consider registers and flags as variables as we have no alias-
ing information about memory. Registers can also be aliased, for
example EAX with AL, but we know all possible cases and treat them
accordingly (see Section 4.1.9 on page 29 for a discussion about alias-
ing).

⇒ phases.cfg.VariableLinker

3.1.3 Function linking

After this phase all function calls are linked to the function definition.
We also detect the variables used to return values from the function.

Library functions are assumed to have C calling convention (cdecl),
therefore we know which variable holds the return value. However,
it is not known for private functions, as the compiler can use any
calling convention.

We implemented an algorithm to detect the variables used for return
values. With the algorithm shown in Listing 3.3 on the following
page, we search the variables killed by the function f. If a variable v

9

is used after a call of f and killed by f, we know that v is a return
value of f.

1 function dfs(f)

2 kill[f] := gen[f]

3 visited := visited ∪ f

4 for g ∈ callee[f]

5 if g /∈ visited

6 dfs(g)

7 kill[f] := kill[f] ∪ kill[g]

8 kill[f] := kill[f] - save[f]

Listing 3.3: Algorithm to detect killed variables. Called on a function
f, we get the killed variables in kill[f]. The variables
written by a function f are in gen[f], the ones saved on
the stack are in save[f].

After we added the variables with the return values, we run the vari-
able linker again. A subsequent step removes all superfluous phi
nodes. This ensures that all variable references are linked to a defini-
tion.

⇒ knowledge.KnowKilledByFunction

phases.cfg.FunctionVariableLinker

3.1.4 Condition code reconstruction

In this phase we replace the flag tests in conditions with relational
operators. Depending on the flags tested and the instruction generat-
ing the flags, we know the relation. After this step, all flags should
be removable. Listings 3.4 on the current page shows an example.

⇒ phases.cfg.ConditionReplacer

1 C:27, P:27, A:27, Z:27, S:27, O:27 := (ECX:23 and ECX:23)

2 jump((Z:27 == 0x0), [0x804850f, 0x8048500])

1

2 jump((ECX:23 != 0x0), [0x804850f, 0x8048500])

Listing 3.4: Before and after the condition replacement phase. The
and operation is removed since it is no longer used.

10

3.1.5 Stack variable recovery

After this phase we have array accesses instead of memory accesses
relative to EBP and ESP. In addition, the caller and the callee use func-
tion parameter instead of memory accesses.

Local variables from the original source program are translated to
registers or memory accesses relative to the stack pointers. If a mem-
ory access is above of EBP, we know that this is an argument. By
checking all memory accesses we find the highest offset relative to
EBP and therefore the number of arguments. This works because we
only have integers and pointers as arguments. Below EBP we find the
saved registers and after them the local variables and the arguments
for the callees. There is no need to separate these. Figure 3.1 on the
following page shows the phases of variable recovery.

In the callees, we replace memory accesses to the argument area by
accesses to the newly introduced argument-variables. At every call
expression, we insert the actual arguments. The arguments are the
stack-array elements at the corresponding positions; the number of
arguments is known from the callee.

The area for local variables is seen as an array. Memory accesses
are translated into array accesses. If there is an access with a static
array offset, we split the array at that position. This separates the
different variables of each other. For the limitations, see Section 4.1.6
on page 28.

Listing 3.5 on this page shows the difference before and after this
phase.

⇒ phases.cfg.FunctionRecovery

1 *(ESP:0 + 0x0) := 0x80486d0

2 call ’puts’()

1loc0[0x0] := 0x80486d0

2call ’puts’(loc0[0x0])

Listing 3.5: Changes of the stack variable recovery phase. Memory
accesses relative to the stack pointer are replaced by intro-
ducing local arrays. Function calls get their actual argu-
ments.

11

(a)

(b)

(c)

esp esp+4 ebp-52 ebp-48 ebp-8 ebp+4 ebp+8

loc0[1] loc1[4] loc5[1] loc6[10] arg0 arg1

lar0 lar1 lar5 loc6[10] arg0 arg1

0 1 ... 5 6
...

16

Figure 3.1: Transformation of stack memory to local variables and ar-
guments. The arrows on top illustrate direct pointer ac-
cesses, the numbers at the bottom the array indices. Saved
registers, stack pointer and the return address are in the
area between ebp-8 and ebp+4. They are not used in the
recovering process.
First, there are only memory accesses relative to esp and
ebp as on row (a). We consider this part of the stack to
be an array. The stack variable recovery phase (see page
11) splits the array at the indices of memory accesses, re-
sulting in row (b). We also replace the stack area above
ebp+4 with function argument variables. After the phase
where we replace arrays with variables (see page 15) we
get row (c). The variables loc0, loc1 and loc5 are intro-
duces since there was no index calculation on the corre-
sponding arrays.
The variables relative to esp are arguments to functions,
the ones relative to ebp are local variables. We see that
this function has at least one local integer variable, and
one array with 10 elements. Moreover, it calls functions
with no more than 2 arguments.

12

3.1.6 Expression reduction

This phase reduces expressions by inlining. First, we reduce tau-
tological expressions like an addition with zero or dereferencing of
address-of operations. Second, we inline expressions. For every us-
age of a variable we calculate the cost for inlining the definition of
the variable. The cost function counts the number of operation and
function calls for an expression. References to variables or memory
have no cost. Then we multiply the cost with #usages− 1 of this ex-
pression. This ensures a cost of zero if the expression is used only
once. If the cost is zero, we replace the reference to the expression
with the expression itself. Movement of instructions is only allowed
within one basic block. Code in phi functions belongs to the previous
basic blocks.

A memory model check can prevent the movement of expressions,
too. We need the memory model because we do not have information
about aliasing for all memory accesses. Moving arbitrary reads with
respect to other reads is allowed, arbitrary writes cannot be reordered
with respect to other writes or reads. If we know that the memory
locations are different, we allow the movement.

Finally, we clean up by removing all definition of unused variables
and all statements without effect. These are statements which do not
define a variable, do not write to memory and with no function calls.
Listing 3.6 on the current page gives an impression of this phase.

⇒ phases.cfg.MathReduction

phases.cfg.SsaReduce

1 EAX:17, EDX:17, ST0:17 := call ’malloc’(loc0[0x0])

2 ESI:18 := EAX:17

3 ...

4 EAX:30 := loc3[0x0]

5 ECX:31 := *((EAX:30 * 0x4) + (ESI:18 + -0x4))

6 loc2[0x0] := ECX:31

1 EAX:17 := call ’malloc’(loc0[0x0])

2

3 ...

4 EAX:30 := loc3[0x0]

5

6 loc2[0x0] := *((loc3[0x0] * 0x4) + (EAX:17 + -0x4))

Listing 3.6: Effects of expression reduction. On Line 1 it can be seen
how the unused variables are removed, line 6 shows the
effect of inlining.

13

3.1.7 Function replacement

This phase replaces all calls to known library functions by calls to
internal functions. For some functions, like malloc and free, this is
just a replacement of the call destination.

However, functions like scanf and printf need special handling.
They have a variable number of arguments, which we do not support
in general. We implemented a parser for static scanf and printf

format strings. The current solution requires that the format string
resides in the read-only data section of the program.

For every read of an integer, a call to the function readInt is inserted
and the return value is assigned to the corresponding variable. For
every format string of a printf call, we create a new function with
the same functionality. Listing 3.7 on this page shows some examples
of the translation.

⇒ phases.cfg.IoFunctionReplacer

phases.cfg.MemoryFuncReplacer

1 loc1[0] := @(loc3[0])

2 loc0[0] := 0x80486aa

3 call ’scanf’(loc0[0])

4 EAX:7 := call ’malloc’(4*loc3[0])

5 ...

6 loc1[0] := EAX:12

7 loc0[0] := 0x80485d5

8 call ’printf’(loc0[0])

21 0x80485d5:

22 "result: %i\n"

23 0x80486aa:

24 "%i"

1loc1[0] := @(loc3[0])

2loc0[0] := 0x80486aa

3loc3[0] := call readInt()

4EAX:7 := call ptrMalloc(4*loc3[0])

5...

6loc1[0] := EAX:12

7loc0[0] := 0x80485d5

8call f80485d5(loc1[0])

9...

10f80485d5:

11call writeStr("result: ")

12call writeInt(arg0:0)

13call writeNl()

14return

Listing 3.7: Replacement of functions. On line 1 to 3 one can see how
scanf is replaced with information of the format string
on line 24. The malloc function on line 4 is replaced by
ptrMalloc. The call of printf on line 8 is replaced by
a call to a new function with the same semantics as the
format string seen on line 22.

14

3.1.8 Replacing arrays with variables

We replace arrays with variables in order to reduce more expressions.
Some arrays have only one element, others have no index calculation
when accessing them. After an expression analysis does not find
an address-of operation on the array, we replace it with a variable.
Since variables can not alias each other, another run of the variable
reduction phase as in Section 3.1.6 on page 13 simplifies the code
again. Listing 3.8 on this page shows the replacement of the arrays
and the result of the reduction, Figure 3.1 on page 12 explains the
idea.

⇒ phases.cfg.ArrayReplacer

1 EAX:30 := loc3[0x0]

2 loc2[0x0] := *((loc3[0x0] * 0x4) + (EAX:17 + -0x4))

3 loc1[0x0] := EAX:30

4 call f80486ad(loc1[0x0], loc2[0x0])

5 loc0[0x0] := EAX:17

6 call ptrFree(loc0[0x0])

1 EAX:30 := lar_loc3_0:0

2 lar_loc2_0:0 := *((lar_loc3_0:0 * 0x4) + (EAX:17 + -0x4))

3 lar_loc1_0:0 := EAX:30

4 call f80486ad(lar_loc1_0:0, lar_loc2_0:0)

5 lar_loc0_0:0 := EAX:17

6 call ptrFree(lar_loc0_0:0)

4 call f80486ad(lar_loc3_0:0, *((lar_loc3_0:0 * 0x4) + (EAX:17 + -0x4)))

5

6 call ptrFree(EAX:17)

Listing 3.8: Effects of array replacement together with reduction. We
can replace most arrays with variables. Therefore, a re-
peated reducing phase can inline and remove a significant
amount of copy operations and temporary variables.

3.1.9 SSA destruction

In this phase, we go out of SSA by removing all phi functions. It is
necessary since SSA is not compatible with our AST. As a prerequisite,
we check that all variables are linked to their definition. Then we
rename all variables to be sure that no two variables with the same
name exist. This is necessary because we do not support different
versions of the same variable name later on.

15

We use the straight forward SSA destruction algorithm “Method I”
described by Sreedhar et al. [30]. It is a simple method with the
downside that it introduces a lot of new variables. The coalescing
phase in Section 3.2.6 on page 21 removes many of them. Listing 3.9
on the current page gives an idea how the algorithm works.

⇒ phases.cfg.SsaBacktranslator

1 A:

2 jump(0, [C])

3

4

5

6 B:

7 jump(0, [C])

8

9

10

11 C:

12 tmp2 := phi(A::0; B::*(tmp5-4);)

13 tmp5 := phi(A::tmp1+8; B::tmp5+4;)

1A:

2tmp2_t := 0

3tmp5_t := tmp1+8

4jump(0, [C])

5

6B:

7tmp2_t := *(tmp5-4)

8tmp5_t := tmp5+4

9jump(0, [C])

10

11C:

12tmp2 := tmp2_t

13tmp5 := tmp5_t

Listing 3.9: Before and after SSA destruction. The destruction algo-
rithm adds an additional variable for every phi function.
Many of them are removed in the coalescing phase (see
section 3.2.6 on page 21).

3.2 high level phases

The AST for the second part consists of high-level language con-
structs, such as while and if statements. The expressions start by
more C like forms with pointer dereferencing. They are successively
reshaped into a Java syntax. Finally, we optimize the code and gener-
ate the Java files.

We have the following types of statements:

• nop

• block

• call

• return

• variable definition

• assignment

• while

• do-while

• if

• switch-case

They are C and Java compatible, but we added more constraints.
Loops have no break or continue and the switch-case construct can
not have fall-through cases.

16

During the phases more and more code is dependent on three helper
classes. Main in Listing D.1 is used to handle the return value of the
main function and the arguments. IoSupport in Listing D.2 provides
methods to read from and write to the console. Pointer in Listing
D.3 is needed for pointers since they do not have a corresponding
language concept in Java.

3.2.1 Structuring

This is the phase where we transform the CFG into the AST. For ev-
ery function, our algorithm searches for specific patterns of vertices
in the CFG. If one is found, the algorithm replaces the vertices by a se-
mantically equivalent vertex. This is done until only one vertex is left.
Figure 3.2 on the following page shows the structuring process.

It is possible that we can not find a pattern. Such a CFG result from
manual jumps in the source program, unknown program constructs
and compiler optimizations. We implemented a fallback mode for
such cases. In this mode, we simulate the jumps with a switch-case
in an infinite loop. It is similar to an interpreter using a switch-based
dispatch loop. Every case entry consists of one basic block where we
replace the jump at the end of every basic block with a write to the
control variable of the switch.

There is room for improvement as we discuss in Section 4.1.5 on
page 28.

⇒ phases.ast.Structurer

3.2.2 Linking

Here, we insert the definitions for the variables, link the references
to them, and link function references to their definition, too. Con-
trary to the SSA representation, we need a specific definition for ev-
ery variable. To make it simple we insert all variable definitions in
the beginning of the function.

In addition we link and rename the functions. As we focus on stripped
binaries, we rename all functions, even if the name of the function is
available. The entry-function gets the name “main”, all others have a
generic, numbered name.

17

CFG AST

A

B

C
D

A

B

C

D

A

B

C

D

A

B

C

D

Figure 3.2: From the CFG to AST. The algorithm searches for the pat-
tern shown in Figure 3.3 on this page. If a pattern is found,
the corresponding vertices are merged until only one ver-
tex remains. A fallback mode ensures that any control-
flow graph can be represented in the abstract syntax tree.

composition it-then-else if-then

. . .

while do-while switch-case

Figure 3.3: Recognized patterns in the CFG.

18

⇒ phases.ast.VariableLinker

phases.ast.FunctionLinker

3.2.3 Statement normalization

In this phase we clean up the AST. Our structuring algorithm intro-
duces several block statements, most of them have no functional use.
We reduce those whenever possible. In addition, we remove dead
code.

As a result, we get code which has just as many blocks as necessary.
Listing 3.10 on this page shows code after this phase.

⇒ phases.ast.StmtNormalizer

1 f8440:

2

3 jump(tmp4 < 2, [0x8450, 0x846c])

4 0x846c:

5 tmp1_t := tmp4

6 jump(0, [0x846e])

7 0x8450:

8 tmp2 := call f8440(tmp4 + -1)

9 tmp3 := call f8440(tmp4 + -2)

10 tmp1_t := tmp3 + tmp2

11 jump(0, [0x846e])

12

13 0x846e:

14 tmp1 := tmp1_t

15 return tmp1

16

1public ? func0(? tmp4) {

2? tmp1, tmp1_t, tmp2, tmp3;

3if(tmp4 < 2){

4

5tmp1_t = tmp4;

6

7} else {

8tmp2 = func0(tmp4 + -1);

9tmp3 = func0(tmp4 + -2);

10tmp1_t = tmp3 + tmp2;

11

12}

13

14tmp1 = tmp1_t;

15return tmp1;

16}

Listing 3.10: A function in low- and high-level representation. The
code on the same line has identical semantics on both
sides. It is not yet optimized.

3.2.4 Reconstructing types

After this phase, every variable, argument and function has a type. In
order to keep the reconstructing algorithm simple, we only consider
information available from the AST. It is possible due to the fact, that
we limited the types of the input program to integer and pointer to
integer. More sophisticated methods are discussed in Section 5.2.1 on
page 40.

19

We get most information from expressions like pointer dereferencing.
The type of a variable is propagated whenever applicable, i.e., when
assigned to another variable, when used as argument or in an expres-
sion. This allows the type reconstruction for most variables. If there
is no information available, it has to be an integer due to the men-
tioned constraints. Listings 3.11 on this page shows the first part of a
function after type reconstruction.

⇒ phases.ast.TypeReconstruction

knowledge.KnowTypes

1 public void func0(Pointer<Integer> tmp1, int tmp0){

2 int tmp4_t = 0;

3 Pointer<Integer> tmp5_t = null;

4 *tmp1 = 0;

5 *(tmp1 + 4) = 1;

6 if(!(tmp0 < 3)){

7 tmp4_t = tmp0 + -3;

8 tmp5_t = tmp1 + 8;

Listing 3.11: Head of a function after type reconstruction. The
variables are initialized with zero or null to suppress
error messages by the Java compiler. Since the code
contains pointer dereferencing operations, it is not yet
Java compatible.

3.2.5 Pointer access encapsulation

We replace all pointers by pointer objects and dereferencing operators
with method calls on the pointer object. The pointer class contains a
reference to an Java array and an index. Since the array represents
only part of the memory, the pointer can operate only on this part,
too. The whole class is in Listing D.3 on page 51. We replace every
read access to a pointer with a copy of the pointer object as copying
the reference results in an wrong behaviour. Listing 3.12 on this page
shows an example.

⇒ phases.ast.PointerReplacer

1 *tmp1 = 0;

2 *(tmp1 + 4) = 1;

3 tmp5_t = tmp1 + 8;

1tmp1.setValue(0, 0);

2tmp1.setValue(1, 1);

3tmp5_t = new Pointer<Integer>(tmp1, 2);

Listing 3.12: Pointer access encapsulation. The variables tmp1 and
tmp5 t are of the type Pointer<Integer> which is
shown in listing D.3 on page 51.

20

3.2.6 Coalescing

In this phase, we reduce the number of variables. It is a pure op-
timization phase. For a discussion about optimization, see Section
5.2.3 on page 41.

As a preparation, we shorten the live range, i.e., the distance between
the definition and the last use of variables. This separates some live
ranges, leading to better coalescing results. The algorithm replaces
reads of a variable x with a different variable y whenever x = y and
the value of y was assigned later than the one of x. Listing 3.13 on
this page illustrates the idea.

a = b;
c = d;
e = d;
. = b;
. = a;

a b c d e

a = b;
c = d;
e = c;
. = a;
. = a;

a b c d e

Listing 3.13: Live range shortening. The live range of every variable
is shown as bold vertical line. After this phase, the live
ranges are shorter, leading to better coalescing results.

For coalescing, we developed an algorithm based on graph coloring
as described by Chaitin et al. [8]. Our changes are due to different
goals. We are interested in high readability rather then good perfor-
mance. The requirements are different, too. In brief, we do not need
to eliminate as many variables as possible since there is no limitation.
Actually, we add more constraints as we do not coalesce unrelated
variables. For a full description of the goals as also the algorithm see
Section 4.1.11 on page 30.

Finally we do copy propagation. It undoes the work of the prepara-
tion, i.e., extending the live ranges of the variables. In addition, we
remove copy statements where the destination variable is the same as
the source variable.

Listing 3.14 on page 23 shows the changes of a code snippet after the
different operations.

⇒
phases.ast.LiveRangeShortening

phases.ast.Coalescing

phases.ast.CopyPropagator

phases.ast.VariableReduction

21

3.2.7 Expression normalization

This phase cleans up expressions. It simplifies negated compare oper-
ations and removes idempotent arithmetic operations. Finally, state-
ments are normalized as described in Section 3.2.3 on page 19.

⇒ phases.ast.ExprNormalizer

3.2.8 Generating Java code

The final phase renames the variables and generates the Java source
code file. In addition, the helper classes as shown in listings D.1, D.2
and D.3, all in the appendix, are written. Listing 3.15 on the facing
page gives an idea how the Java code looks like.

⇒ phases.ast.VariableNamer

phases.ast.JavaWriter

22

(a)

1 x0 = 1;
2 y1 = ...;
3 x3 = 0;
4 do {

5 x2 = x0;

6 y0 = y1;

7 x1 = x3;

8 y2 = y0 − 1;
9 x0 = x1 + x2;

10 y1 = y2;

11 x3 = x2;

12 x4 = x2;

13 } while(y2 6= 0);
14 ... = x4;

(b)

x0 = 1;
y1 = ...;
x3 = 0;
do {

x2 = x0;

y0 = y1;

x1 = x3;

y2 = y0 − 1;
x0 = x1 + x2;

y1 = y2;

x3 = x2;

x4 = x3;

} while(y1 6= 0);
... = x4;

(c)

x0 = 1;
y0 = ...;
x1 = 0;
do {

x2 = x0;

y0 = y0;

x1 = x1;

y0 = y0 − 1;
x0 = x1 + x2;

y0 = y0;

x1 = x2;

x2 = x1;

} while(y0 6= 0);
... = x2;

(d)

1x0 = 1;
2y0 = ...;
3x1 = 0;
4do {

5x2 = x0;

6;

7;

8y0 = y0 − 1;
9x0 = x1 + x0;

10;

11x1 = x2;

12;

13} while(y0 6= 0);
14... = x2;

Listing 3.14: Effects of coalescing. The input code is listed in (a). Af-
ter live range splitting we get (b). The affected variables
are printed bold. Coalescing produces the code in (c).
The following variables are coalesced: {y0, y1, y2} → y0,
{x1, x3} → x1 and {x4, x2} → x2. Finally, copy propaga-
tion produces the code in (d).

1 public int main() {

2 int var0 = 0;

3 int var1 = 0;

4 Pointer<Integer> var2 = null;

5 func2();

6 var1 = IoSupport.readInt();

7 var2 = new Pointer<Integer>((((var1 >= 2) ? (var1 * 4) : 8) / 4));

8 if((var2 != null)) {

9 func0(var2, var1);

10 func3(var1, var2.getValue((-1 + var1)));

11 var2.free();

12 var0 = 0;

13 }

14 else {

15 func1();

16 var0 = -1;

17 }

18

19 return var0;

20 }

Listing 3.15: Upcompiled Java code.

23

4
E VA L U AT I O N

First, we discuss problems and ideas related to upcompiling. In the
second part, we present performance measurements on both, the up-
compiled programs and the upcompiler itself.

4.1 discussion

We explain problems we have had and ideas we came up during
implementation. For some problems we did not had the resources to
tackle them, for others we refer to the available literature.

4.1.1 Function pointers

The upcompiler does not yet handle function pointers. We see three
approaches to support them. For all of them, we have to know the
functions called via a function pointer. It can be a conservative guess
resulting in considering all functions.

The first idea is that we create a dispatcher function for function
pointer types. These are functions with the same return type and
arguments as the function to be called. An additional argument con-
tains the address of the function we want to call with those arguments.
The body of this function consists of one switch-case statement with
the function address as case value and the function call as the only
code. A call of a function pointer results in a call of the dispatcher
function with the function pointer as address.

The second idea is based on single access methods (SAM). We create
a class for every function. All those classes implement an interface
containing one method declaration with the signature of the original
function. One instance for every class is created at startup of the
program. Pointers to a function are replaced with a reference to such
an instance. A call of a function pointer results in a method call on
the referenced instance.

25

The third idea uses lambda expression. It is similar to the second
idea with the difference, that we do not generate an object for each
function but a lambda expression. We also create them at startup and
use references whenever we had a function pointer in the original
program. The Java specification request 335 [5] describes the imple-
mentation of lambda expressions. It is not yet included in Java but
on the roadmap for JDK 8.

4.1.2 Function argument reconstruction

The upcompiler detects only arguments passed on the stack. Argu-
ments passed by registers are not yet handled, they appear as un-
linked variables. As there exists literature from Emmerik [18] on that
problem, we did not investigate this issue in detail.

The usage of integers as the only data type simplifies the problem
considerably. For a real world application, every data type has to
be supported. Furthermore, the behavior of the upcompiler is unde-
fined when, for example, pointer arithmetic is done on a composed
argument passed by value.

We do not generally consider variable length function arguments. It
is a challenging problem as the upcompiler has no information how
the number of arguments is calculated. Apart from this, most C code
will use va start, va arg and va end. Since they are preprocessor
macros and therefore inlined, they are hard to detect.

4.1.3 Non returning functions

Some functions, like exit from the C library, do not return. The
compiler is aware of this and hence it does not produce code for
stack-frame cleanup or function epilogue. We only see the function
call and do not recognize the end of the function. For library func-
tions, this is not a problem since we know whether they return or not.
Unfortunately, it can not be known for user functions. The problem
in our implementation is that we consider all following code as part
of the function.

A solution might be that we use pattern matching to detect function
boundaries. This approach may produce wrong results, since some
functions have no specific pattern or some pattern exists inside a func-
tion. Another method is a similar approach we use for the detection

26

text

a := ...

jmp *(a*4 + 0x300)

...
0x130

...
0x140

...
0x160

a := ...

jmp *(a*4 + 0x30c)

...
0x200

...
0x250

data

0x0130

0x300

0x0140

0x0160

0x0200

0x30c

0x0250

0x3b29

0x314

?

Figure 4.1: Two jump tables in a program. As the value at address
31416 does not point into the text section, it does not be-
long to the jump table.

of basic blocks, i.e., we do nothing and split the functions later. Split
points are then the destination addresses of call instructions.

4.1.4 Jump tables

Switch-case statement recovery is not a trivial task as pointed out by
Cifuentes and Emmerik [12]. As there is already literature available,
we only describe how we recover jump tables. Jump tables are gener-
ated when a switch-case statement has several successive numbered
cases. The value of the control expression is used as index of the jump
table. At the indexed position, an address into the code is found. The
control flow is directed to this address by a jump instruction. Fig-
ure 4.1 on the current page shows how the jump table looks in the
compiled program.

While we disassemble the binary, we need the destination address
of the jump table to find all basic blocks. To simplify the detection,
we interpret every computed jump as a jump table. It is possible
due to our constraints on the input programs. In the computation,
an address of the read-only data segment is involved; this address
marks the start of the jump table.

To find the size of the jump table we need a data flow analysis. How-
ever, it is not possible to do this analysis at the current time, as it
needs information from a later phase. Therefore, we assume the size

27

of the table as big as possible. One limitation is the end of the data
segment. The other limitation is not obvious. Every entry in the table
points into the text segment since it is a jump destination. As soon as
an entry does not point into the text segment we know that it does
not belong to the table. With this method, we probably read too many
entries. The superfluous ones can be removed in a later phase. This
is a working algorithm, but there is much room for improvements.

4.1.5 Structuring

Our structuring algorithm uses a very narrow set of patterns. Since
Java has labeled break and continue, they can also be used to get
better code. In addition, fall through in the switch-case statement is
not considered.

The problem of structuring is not new. Lichtblau [22], Cifuentes [11]
and Simon [28] provide more information for improvement of struc-
turing.

4.1.6 Stack variables

The simple method to detect stack variables, as illustrated in Figure
3.1 on page 12, is error prone. If an array is not only accessed by index
0 but also at other, constant indexes, our algorithm splits the array
at those positions, too. We encountered cases where the compiler
optimized in such a way that the only direct array access was at index
−1. In addition, the array size can be determined to be longer than
used if the memory after the array is used for padding.

We expect better results with data flow analysis and range checks
for dynamic arrays accesses. In addition, a way to use information
provided by the user is necessary, since we do not expect perfect
results for every input.

There exists literature about the topic; Chen et al. [9] propose a shadow
stack and Mycroft [25] discusses several problems and ideas.

28

4.1.7 Library calls

Detecting library calls is necessary to properly link functions. A later
translation of the library calls also depends on correct recognized
library functions. Contrary to previous work by Cifuentes [11], it is
no longer a difficult problem when using ELF binaries with dynamic
linked libraries on Linux.

To find the translation of addresses to function names, we use the
same method as the dynamic linker does. A database provides fur-
ther information about the library functions, such as the names and
types of the arguments. Currently, the database entries are hand
crafted. To some extent it should be possible to generate the database
automatically from the header files of the libraries.

4.1.8 Tail calls

Tail call elimination is an optimization where the last function call in a
function is replaced by a jump instruction. With this technique, there
is no need to allocate an additional stack frame. There is no return
instruction after the call statement, as the return of the function we
jumped in is used.

A tail call is not a problem as the algorithm just follows the jumps.
The called function is seen as part of the original function. If multiple
functions “tail call” a function, the code of the callee is duplicated
for every caller. It is not a problem with respect to correctness. The
readability is higher when we detect such tail calls, but it can be part
of the optimization as described in Section 5.2.3 on page 41. Further
work could be done to detect cases where code is duplicated, and
extract that code into one function.

4.1.9 Aliasing of registers

To translate into SSA, we consider only flags and registers as variables
as we do not have any information about aliasing of memory accesses.
On x86, registers can be aliased, too, such as AL, AH and AX are part of
EAX.

We implemented special rules to handle situations of register aliasing.
Consider the case when EAX is written and later AH is read. The write

29

to EAX kills the registers AL, AH, AX and defines EAX. When reading
AH we see that it is not defined but EAX is. Because we know that AH
:= ((EAX shr 8) and 0xff), we replace the access to AH with the
expression ((EAX shr 8) and 0xff).

4.1.10 SSA as intermediate representation

As described by Mycroft [25] and Emmerik [18], SSA has several ben-
efits in decompilation, such as simplified propagation or implicit use-
def information. We see another important aspect of SSA. During
compilation, many different variables are mapped to the same regis-
ter. The variables are originally used because they express different
things and moreover, they could have had different types. This infor-
mation is lost as we only have a narrow set of registers without type
information. If we transform the program into SSA, we decouple the
various variables from the registers. Therefore, the only dependen-
cies between variables are when they are assigned to each other, but
not when they accidentally use the same register.

4.1.11 Coalescing unrelated variables

Coalescing has two effects. It reduces the number of used variables
and the number of copy statements. The second is a consequence
from the first as the merging of variables leads to assignments where
the destination is the same variable as the source. So far it is the
same as in a compiler. However, we have a different motivation for
this phase.

For once, this optimization has non-functional reasons. Unlike in a
compiler, we have arbitrary many variables we can use. We imple-
mented it to make the code more readable.

Moreover, we do have additional constraints. Variables of different
types are never allowed to be coalesced. In addition, we do not al-
low coalescing of unrelated variables as we consider it as bad coding
style.

For coalescing, we use the simple graph coloring method. Disallow-
ing that two variables u and v are coalesced, means adding an edge
between vertex u and v. Since we only allow coalescing of variables
with the same type, we add edges from every variable to those vari-
ables with different types.

30

We also want to prevent the coalescing of unrelated variables. To
achieve this, we developed an algorithm to find additional constraints.
The basic idea is, that we only allow coalescing of variables on the
same data flow path. If they are on the same path, they are related.

Our algorithm to build the constraint works as follows. First we build
the data flow graph f . Then we build the transitive closure t of graph
f and convert it to an undirected graph u. Figure 4.2 on page 34

shows an example for f and u. Finally the complement c of u contains
the constraints needed to disallow coalescing of unrelated variables.
Therefore, we add the edges from c to the constraint graph used for
graph coloring.

With this approach we get the desired results. Unrelated variables
are not coalesced, even though it is allowed by the live ranges. Fur-
thermore, it does not influence the number of copy statements. It is
not possible as there is never an assignment of one of those variables
to another one, since the variables are on separate data flow paths.
Listing 4.1 on page 34 shows the results of our algorithm.

Nevertheless, there is still room for optimizations. Thus it can hap-
pen, that a variable containing the size of an array, is used to count
an index down. If we are able to decide the kind of the variables as
described in Section 5.2.3 on page 41, we can add more constraints.

4.1.12 Semantic gap

In contrast to Java, C and assembly code gives more control over the
code to the programmer. Since this means that Java can not express
everything we can find in a binary program, we need to address some
issues.

We showed in our upcompiler how pointers can be handled by imple-
menting an abstraction. However, pointers can be used in other ways
we do not yet handle, i.e., cast parts of memory to different types. On
the other hand, we think a direct translation of such cases does not
result in good Java code.

Nevertheless, some specific constructs can be handled. Casting a
floating point value to its bit representation can be done by the Java
function Float.floatToIntBits. There are also functions for the
other direction and for doubles. An array of bytes can be converted
to and from an integer by basic mathematical operations. Java also
provides methods to convert arrays of bytes into strings and back.

31

For memory blocks where we do not know anything about the con-
tent, we should still be able to handle all cases. The memory is repre-
sented by a memory stream class. This class has methods to access the
data like the Java classes DataInputStream and DataOutputStream.
In addition, seeking has to be possible. Accessing the stream class has
to be abstracted by a pointer class, since different pointer variables
have different positions in the memory. Unfortunately, this relies on
the Unsafe API which is not standardized but widely supported.

Unsigned data types have to be converted to signed types since Java
does not yet have unsigned types, they are announced for JDK 8. If
the most significant bit is used too, the next bigger data type needs to
be used. With the BigInt class in Java, there is always a bigger data
type available. Additional code may be inserted to ensure correct
behavior for operations like subtraction.

It is possible that the upcompiler is not able to translate some pro-
grams. We have some ideas to handle such cases. For example, parts
or the whole program is executed in a virtual machine like JPC [6].
As it does not solve the upcompile problem, it opens the field for
dynamic code analysis.

4.1.13 Obfuscation and optimization

Obfuscated binaries are actively changed in order to make it difficult
to understand them. There exists tools and methods to obfuscate bi-
naries, but we think the problem is more subtle. The compilation pro-
cess itself destroys information contained in the source code. While
compiling with no optimization and all debug symbols let you recon-
struct most of the code, additional comments and other information
is lost. Compilation with full optimization and no debug symbols
makes the generated binary already hard to understand.

When a binary is actively obfuscated, it is hard to understand or de-
compile it. Such techniques are used to protect the software against
inspection. The reasons vary from enforcing of the copyright, pro-
tecting trade secrets, protecting against malware, protection against
virus scanner and more.

Nevertheless, there is research going on. Kruegel et al. [21] and Vi-
gna [31] describe how obfuscated binaries can be read and analyzed.
But it is not done with the implementation of those methods in the
upcompiler. The obfuscation will also affect other phases of the up-
compiler.

32

Upcomiling legacy applications may be less challenging than new
ones. Old compiler did less optimization or the optimization meth-
ods are now better understood. On the other hand, software written
decades ago may use techniques or patterns which are no longer seen
as good practice. Such techniques include spaghetti code or extensive
inline assembly.

Furthermore, obsolete processor architectures may led to different
optimizations than modern ones. As a optimization is often bound to
a specific hardware, understanding the hardware may be needed to
understand the optimization. Reverting an optimization is more easy,
if not crucial, when the optimization is well understood.

4.1.14 Functional programming languages

We assume that an upcompiler should be able to handle programs
written in a functional programming language. Based on the Church-
Turing thesis, for every algorithm written in a functional programing
language an imperative version exists. If an upcompiler is complete,
i.e., can handle the whole instruction set, it can upcompile every pro-
gram.

Practically, we were not able to upcompile a Haskell program. A ma-
jor problem is the huge size of the runtime system included in the
compiled program. A “Hello World” program compiles into a 1.1
MiB binary, while the user code compiles into an 2.3 KiB object file.
With different tools we got a 199 line assembly file or 1702 line C
code. The runtime system consists of around 50,000 lines of highly
optimized C code. The tasks includes memory management, a par-
allel garbage collector, thread management and scheduler, primitive
operations for GHC and a bytecode interpreter [23].

Nevertheless, we think it is possible to adjust an upcompiler to func-
tional programs. First, the user application has to be separated from
the runtime system. For the runtime system, equivalent functionality
has to be provided as Java code. We expect that rewriting is much
simpler than upcompiling. For Haskell, this is true as the original
code is available. The upcompiler only needs to handle the user code.
It is possible that some parts of the user code is in bytecode. In this
case, the upcompiler needs a front end for the bytecode or a bytecode
interpreter is used during run time.

33

f u
a

b

c d

e

f g

h i

a

b

c d

e

f g

h i

Figure 4.2: Data flow graph f of the program from Listing 4.1 on the
current page, and the undirected version of the transitive
closure u of it. The components are not always complete.
If two variables (vertices) are connected, coalescing those
variables is allowed, hence the complement of u is added
to the constraint graph.

int main(){
 a = readInt();
 if(a > 0){
 b = a;
 do{
 c = b;
 d = c - 1;
 func0(d);
 b = d;
 }while(b > 0);
 func0(a);
 e = 0;
 do{
 f = e;
 func0(f);
 g = f + 1;
 e = g;
 }while(e < a);
 h = 0;
 }else{
 h = -1;
 }
 i = h;
 return i;
}

a b c d e f g h i

a b c d e f g h i

int main(){
 a = readInt();
 if(a > 0){
 b = a;
 do{

 b = b - 1;
 func0(b);

 }while(b > 0);
 func0(a);
 e = 0;
 do{

 func0(e);
 e = e + 1;

 }while(e < a);
 h = 0;
 }else{
 h = -1;
 }

 return h;
}

a b e h

a b e h

Listing 4.1: Result of the constrained coalescing. Left is the program
before, right the same program after coalescing. The lines
show the live ranges of the variables. Variable b, e and
h have no overlapping live ranges. Due to our constraint
for unrelated variables, they are not coalesced.

34

4.2 performance

We measured the performance of the upcompiler as also upcompiled
programs. All measurements were done on a computer with the fol-
lowing specifications:

Processor Intel Core 2 Duo CPU L9600 at 2.13GHz
Memory 1.7 GiB

OS Ubuntu 12.04 with Linux 3.2, 64-bit
LLVM 2.9

Java 1.6.0 24 Sun Microsystems Inc., 64-Bit Server VM

4.2.1 Upcompiler

To measure the time of the phases, we instrumented the upcompiler.
The numbers are the medians over 16 measurements on 7 different
programs.

The most interesting numbers are the time spent in the different
phases and the influence of the optimization level. Figure 4.3 on the
following page shows both of them.

We see that the upcompiler performs best on unoptimized programs.
Most of the differences in the time compared to the optimized pro-
grams are in variable-handling related phases. Inspections of the
unoptimized binaries have shown that the variables are mostly writ-
ten back to memory. With this, the variables are preserved and the
upcompiler hardly inserts phi nodes. In consequence, the upcom-
piler does also not produce so many variables during SSA destruction
which makes coalescing fast.

35

0 1 2 s

optimization level

0

1

2

3

ti
m

e
 i
n
 s

e
c

Others
FunctionVariableLinker
VariableReduction
FunctionRecovery
ArrayReplacer
Disassembler

Figure 4.3: Time spent in the different phases of the upcompiler.

4.2.2 Programs

To determine the differences between compiled and upcompiled code,
we measured the execution time of 4 programs. The first program,
fibrec, calculates a user specified Fibonacci number in a very inef-
ficient, recursive way. The second program, fibloop, has the same
functionality but uses a loop to do it. Finally, we have a quicksort

and a heapsort program.

For every program we compare 3 versions. We have a binary version
compiled with optimization -O2, the upcompiled Java program, and
a hand crafted Java version based on the C source. The changes for
the last one are in order to make it Java compatible.

Figure 4.4 on the next page shows the median and standard deviation
over 10 measurements with same input for every program run. The
time is the user-time measured with the time utility. We try to explain
some striking results.

The C version of the test program fibrec is more than 2 times slower
than the Java version. This huge difference is due to the fact that the
recursive function is public and hence the compiler can optimize it
only very conservatively. We declared the function private to test the
hypothesis and measured an execution time of 5.5 seconds.

Since the upcompiled code of both Fibonacci programs is nearly the
same as the C code, the similar times of the two versions are not
surprising.

36

For both sorting algorithms, the upcompiled version is much slower
than the Java version. In both cases the structuring algorithm failed
for the compute-intense kernel function. The fallback mode is used
there. We assume, this prevents Java from optimizing the code.

The reasons for the difference between the C and Java version is not
entirely known. We assume that the range checks on array accesses
have a significant impact. Furthermore, the Java version spends a
considerable time on tasks not related to sorting. We measured the
sorting time of the hand written quicksort to be 3.0 seconds. This
does not include the start of the JVM, allocating memory, reading
input or writing output.

C upcompiled Java
0

1

2

3

4

5

6

7

8

9

10

ti
m

e
 i
n
 s

e
c

C upcompiled Java
0

1

2

3

ti
m

e
 i
n
 s

e
c

fibrec fibloop
42th Fibonacci number 231 − 1th Fibonacci number

C upcompiled Java
0

2

4

6

8

10

12

ti
m

e
 i
n
 s

e
c

C upcompiled Java
0

2

4

6

8

10

12

ti
m

e
 i
n
 s

e
c

quicksort heapsort
1.000.000 elements 1.000.000 elements

Figure 4.4: Performance comparison of upcompiled programs. We
compare an optimized C program, an upcompiled Java
program and a hand written Java program based on the C
code.

37

5
C O N C L U S I O N A N D F U T U R E W O R K

5.1 conclusion

We have demonstrated that upcompilation is possible by implement-
ing an upcompiler. While it supports only a narrow set of input
programs, we are able to fully and automatically translate those into
Java source code.

Our upcompiler handles optimized 32-bit x86 binary programs. The
binaries doe not need to have debug information or symbols. We
detect calls to dynamically linked library functions and convert some
of them to Java system calls. For the functions in the binary, we
recover the local variables, arguments and return values. Memory
accesses are converted to variables and arrays whenever possible.

We convert the control flow graph to an abstract syntax tree, con-
sisting of high-level language constructs. We type the variables to
integer and pointer to integer. The upcompiler optimizes the code
for readability. This includes expression reduction and code cleanup.
Furthermore, we developed a custom coalescing algorithm in order
to reduce the number of variables without merging unrelated vari-
ables.

Since we implemented all phases, we touched all major areas in up-
compilation. Within this thesis we describe the phases of our upcom-
piler and describe the algorithms. The implementation can be found
in the source code. We discuss problems we faced during implemen-
tation. For some of them we present solutions, e.g., coalescing in the
context of readability, detection of return values or the transforma-
tion of stack memory to local variables. For the unsolved challenges,
we present ideas or refer to available research literature.

We are aware that our upcompiler is not yet ready for real world
applications. Since it is free software, we hope it is useful for others
to study and/or extend it.

39

5.2 future work

A closer look at our upcompiler reveals that the binary is translated
into a representation which is close to C and then wrapped into Java.
It would be interesting to find a way to go directly to Java. However,
since C is close to assembly, it may be difficult to do this.

We only analyze the code statically. If the upcompiler uses dynamic
feedback, it can improve the code. Some conservative decisions may
lead to slow execution or complicated source code. If the upcompiler
has information from program runs, it is able to optimize the normal
case. Such a dynamic method can be used on the original binary as
well as in the produced Java source code.

The following sections describe problems we consider as most impor-
tant for improving the overall result of the upcompiler.

5.2.1 Type recovery

The upcompiler only supports 32 bit signed integers and pointers
to them. For real world problems, this is clearly not good enough.
Adding support for other primitive data types should not be a dif-
ficult task. Already Cifuentes [11] describes how integer types with
more bits and unsigned integers can be detected.

Reconstruction of composite data-types like arrays, records or even
objects is the the next step. We refer to other literature like Mycroft
[25] and Dolgova and Chernov [17]. They describe the reconstruc-
tion of composite data types and give further references. Beside the
static analysis, Slowinska et al. [29] describes how they use dynamic
analysis.

5.2.2 Generality

To widen the scope of input programs, the upcompiler needs several
improvements.

We focused on binaries produced by LLVM, binaries from different
compilers have to be tested. Support for more library functions is
necessary and better support for printf and scanf, too. A broader
range of input programs will also use more assembly instructions

40

than we support at the moment. Unusual composition, the use of
inline assembly or code obfuscation tools also needs consideration.

Furthermore, function pointers are not yet supported. They need
special handling during upcompilation. The mapping to Java has to
be implemented, too.

Improvements of the structuring phase together with SSA destruction
could lead to better output. A switch-case reconstruction from jump
tables is needed for more readable code. Better structuring leads to
less cases where the fallback mode is used. A more sophisticated SSA
destruction method may render coalescing obsolete or produces less
copy statements in the final code.

Finally, support for more machines will improve the overall robust-
ness of the methods. This is necessary because the goal of the up-
comiler is to handle binaries of obsolete machines. Adding support
for obsolete machines will be a recurring task.

5.2.3 Optimization and code metrics

The upcompiler has optimization phases like compilers have. As the
optimizations of compilers can be measured in hard units, like exe-
cution time or size of the produced code, there is no obvious metric
for source code. Our coalescing phase has shown that reducing the
number of variables improves the code quality, but there are more
factors which have to be considered.

Obviously, it is difficult to write an optimizer without having a cost
function. Literature about code metrics exists, we recommend Mc-
Connell [24] as a starting point. In the remaining paragraphs, we will
discuss some optimizations.

The expression reduction we implemented is rudimentary, advanced
code metrics are not considered. Our only consideration is, that we
do not increase the number of expressions by copying them. This
may improve the readability in a specific situation. But reducing all
expressions as far as possible can reduce the readability if the expres-
sion size becomes to big.

Loop recovery also improves the code readability. Transforming a do-
while loop surrounded by an if statement into an while loop should
reduce the complexity. Replacing while loops with for loops may also
increases the readability.

41

Variable naming can directed by the kind of the variable. Iteration
variables can be named as i, j and k, variables containing a size
would be named n, m, size or count. Furthermore, name inference,
e.g., using the names from library function arguments and propagate
them, can significantly improve the naming quality.

For numeric values in the code, we propose a constant reconstruction.
This means the replacement of numeric values by constants. If the
same value is used multiple times, the same constant can be used if it
has the same meaning. This can be decided with the same method as
we use for coalescing. Naming the constants can be done as variables
are named.

Function extraction reduces function sizes. It reverts the inlining from
the compiler. The compiler can inline a function at several locations.
With code clone detection [27] techniques we should be able to find
copied code. Nevertheless, we have to be able to find a good point
where a function can be extracted. An extracted function should re-
turn at most one variable and the number of arguments should be
small.

42

A
B I B L I O G R A P H Y

[1] Boomerang. URL http://boomerang.sourceforge.net/. (Cited
on page 5.)

[2] REC. URL http://www.backerstreet.com/rec/rec.htm. (Cited
on page 5.)

[3] C2j. URL http://tech.novosoft-us.com/product_c2j.jsp.
(Cited on page 5.)

[4] JGraphT. http://jgrapht.org/. (Cited on page 7.)

[5] JSR 335: Lambda Expressions for the Java Programming Lan-
guage. URL http://jcp.org/en/jsr/detail?id=335. (Cited
on page 26.)

[6] JPC - The Pure Java x86 PC Emulator. http://jpc.sourceforge.
net, 2009. (Cited on page 32.)

[7] Brian Alliet and Adam Megacz. Complete Translation of Unsafe
Native Code to Safe Bytecode. In Proceedings of the 2004 Workshop
on Interpreters, Virtual Machines and Emulators, IVME ’04, pages
32–41, New York, NY, USA, 2004. ACM. ISBN 1-58113-909-8.
URL http://doi.acm.org/10.1145/1059579.1059589. (Cited
on page 5.)

[8] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John
Cocke, Martin E. Hopkins, and Peter W. Markstein. Regis-
ter allocation via coloring. Computer Languages, 6(1):47 – 57,
1981. ISSN 0096-0551. URL http://www.sciencedirect.com/

science/article/pii/0096055181900485. (Cited on page 21.)

[9] Gengbiao Chen, Zhuo Wang, Ruoyu Zhang, Kan Zhou, Shiqiu
Huang, Kangqi Ni, Zhengwei Qi, Kai Chen, and Haibing Guan.
A Refined Decompiler to Generate C Code with High Readabil-
ity. In Proceedings of the 17th Working Conference on Reverse Engi-
neering (WCRE), pages 150 –154, oct. 2010. (Cited on page 28.)

[10] Vitaly Chipounov and George Candea. Enabling Sophisticated
Analysis of x86 Binaries with RevGen. In Proceedings of the 7th
Workshop on Hot Topics in System Dependability (HotDep), 2011.
(Cited on page 5.)

43

http://boomerang.sourceforge.net/
http://www.backerstreet.com/rec/rec.htm
http://tech.novosoft-us.com/product_c2j.jsp
http://jgrapht.org/
http://jcp.org/en/jsr/detail?id=335
http://jpc.sourceforge.net
http://jpc.sourceforge.net
http://doi.acm.org/10.1145/1059579.1059589
http://www.sciencedirect.com/science/article/pii/0096055181900485
http://www.sciencedirect.com/science/article/pii/0096055181900485

[11] Cristina Cifuentes. Reverse Compilation Techniques. PhD the-
sis, Queensland University of Technology, July 1994. (Cited on
pages 5, 28, 29, and 40.)

[12] Cristina Cifuentes and Mike Van Emmerik. Recovery of Jump Ta-
ble Case Statements from Binary Code. In Proceedings of the 1999
International Conference on Program Comprehension, pages 192–199,
1999. (Cited on page 27.)

[13] Keith Cooper and Linda Torczon. Engineering a Compiler. Elsevier
Science, 2011. ISBN 978-0-12-088478-0. (Cited on page 9.)

[14] Keith D Cooper, Timothy J Harvey, and Ken Kennedy. A Simple,
Fast Dominance Algorithm. Software Practice and Experience, (4):
1–28, 2001. (Cited on page 9.)

[15] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman,
and F. Kenneth Zadeck. Efficiently Computing Static Single As-
signment Form and the Control Dependence Graph. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 13(4):
451–490, October 1991. ISSN 0164-0925. (Cited on page 5.)

[16] Gil Dabah. diStorm, 2011. URL http://www.ragestorm.net/

distorm/. (Cited on page 7.)

[17] E. Dolgova and A. Chernov. Automatic Reconstruction of Data
Types in the Decompilation Problem. Programming and Computer
Software, 35:105–119, 2009. ISSN 0361-7688. URL http://dx.doi.

org/10.1134/S0361768809020066. (Cited on page 40.)

[18] Michael James Van Emmerik. Static Single Assignment for Decom-
pilation. PhD thesis, The University of Queensland, 2007. (Cited
on pages 2, 5, 26, and 30.)

[19] Maurice H. Halstead. Machine-independence and third-
generation computers. In Proceedings SJCC (Sprint Joint Computer
Conference), page 587–592, 1967. (Cited on page 5.)

[20] Karl Trygve Kalleberg, Ole André Vadla Ravnås, Johann Prieur,
and Haakon Sporsheim. Frida IRE, 2010. URL http://code.

google.com/p/frida-ire/. (Cited on page 7.)

[21] Christopher Kruegel, William Robertson, Fredrik Valeur,
and Giovanni Vigna. Static Disassembly of Obfuscated
Binaries. In Proceedings of the 13th USENIX Security
Symposium, SEC’04. USENIX Association, 2004. URL
http://static.usenix.org/event/sec04/tech/full_papers/

kruegel/kruegel_html/disassemble.html. (Cited on page 32.)

[22] Ulrike Lichtblau. Decompilation of Control Structures by Means
of Graph Transformations. In TAPSOFT, Vol.1, Lecture Notes

44

http://www.ragestorm.net/distorm/
http://www.ragestorm.net/distorm/
http://dx.doi.org/10.1134/S0361768809020066
http://dx.doi.org/10.1134/S0361768809020066
http://code.google.com/p/frida-ire/
http://code.google.com/p/frida-ire/
http://static.usenix.org/event/sec04/tech/full_papers/kruegel/kruegel_html/disassemble.html
http://static.usenix.org/event/sec04/tech/full_papers/kruegel/kruegel_html/disassemble.html

in Computer Science, pages 284–297, 1985. ISBN 3-540-15198-2.
(Cited on page 28.)

[23] Simon Marlow and Simon Peyton-Jones. The Architecture of Open
Source Applications, volume 2. URL http://www.aosabook.org/

en/ghc.html. (Cited on page 33.)

[24] Steve McConnell. Code Complete: A Practical Handbook of Soft-
ware Construction. Microsoft Press, 2nd edition, 2004. ISBN
0735619670. (Cited on page 41.)

[25] Alan Mycroft. Type-Based Decompilation (or Program Recon-
struction via Type Reconstruction). In Proceedings of the 8th Eu-
ropean Symposium on Programming Languages and Systems, pages
208–223. Springer, 1999. ISBN 3-540-65699-5. (Cited on pages 5,
28, 30, and 40.)

[26] David A Roberts. LLJVM. URL http://da.vidr.cc/projects/

lljvm/. (Cited on page 5.)

[27] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Compar-
ison and evaluation of code clone detection techniques and tools:
A qualitative approach. Science of Computer Programming, 74(7):
470–495, 2009. (Cited on page 42.)

[28] D. Simon. Structuring Assembly Programs. Honours thesis, The
University of Queensland, Department of Computer Science and
Electrical Engineering, 1997. (Cited on page 28.)

[29] Asia Slowinska, Traian Stancescu, and Herbert Bos. DDE: dy-
namic data structure excavation. In ApSys, pages 13–18, 2010.
(Cited on page 40.)

[30] Vugranam C. Sreedhar, Roy Dz-Ching Ju, David M. Gillies, and
Vatsa Santhanam. Translating Out of Static Single Assignment
Form. In Static Analysis Symposium/Workshop on Static Analysis,
pages 194–210, 1999. (Cited on page 16.)

[31] Giovanni Vigna. Static Disassembly and Code Analysis. In
Mihai Christodorescu, Somesh Jha, Douglas Maughan, Dawn
Song, and Cliff Wang, editors, Malware Detection, volume 27

of Advances in Information Security, pages 19–41. Springer US,
2007. ISBN 978-0-387-44599-1. URL http://dx.doi.org/10.

1007/978-0-387-44599-1_2. (Cited on page 32.)

45

http://www.aosabook.org/en/ghc.html
http://www.aosabook.org/en/ghc.html
http://da.vidr.cc/projects/lljvm/
http://da.vidr.cc/projects/lljvm/
http://dx.doi.org/10.1007/978-0-387-44599-1_2
http://dx.doi.org/10.1007/978-0-387-44599-1_2

B
L I S T I N G S

3.1 The 3 different use cases of the jump statement. 8

3.2 A basic block after the disassembly phase. 9

3.3 Algorithm to detect killed variables. 10

3.4 Before and after the condition replacement phase. 10

3.5 Changes of the stack variable recovery phase. 11

3.6 Effects of expression reduction. 13

3.7 Replacement of functions. 14

3.8 Effects of array replacement together with reduction. . . 15

3.9 Before and after SSA destruction. 16

3.10 A function in low- and high-level representation. 19

3.11 Head of a function after type reconstruction. 20

3.12 Pointer access encapsulation. 20

3.13 Live range splitting. 21

3.14 Effects of coalescing. 23

3.15 Upcompiled Java code. 23

4.1 Result of the constrained coalescing. 34

D.1 The Main class. 51

D.2 The IoSupport class. 51

D.3 The Pointer class. 51

47

C
L I S T O F F I G U R E S

1.1 Machine code abstraction level. 2

3.1 Transformation of stack memory to local variables and
arguments. 12

3.2 From the CFG to AST. 18

3.3 Recognized patterns in the CFG. 18

4.1 Two jump tables in a program. 27

4.2 Data flow graph for coalescing. 34

4.3 Time spent in the different phases of the upcompiler. . . 36

4.4 Performance comparison of upcompiled programs. . . . 37

49

D
A P P E N D I X

d.1 glue code

The following three classes are written by the upcompiler to support
the generated code.

1 public class Main {

2 public static void main(String[] args) {

3 UserPrg user = new UserPrg();

4 System.exit(user.main());

5 }

6 }

Listing D.1: The Main class. Used to instantiate the user program and
return the exit value.

1 import java.util.Scanner;

2

3 public class IoSupport {

4 private static Scanner s = new Scanner(System.in);

5

6 public static int readInt() {

7 return s.nextInt();

8 }

9

10 public static void writeStr(String string) {

11 System.out.print(string);

12 }

13

14 public static void writeNl() {

15 System.out.println();

16 }

17

18 public static void writeInt(int value) {

19 System.out.print(value);

20 }

21 }

Listing D.2: The IoSupport class. Provides the functionality of
readInt, writeInt, writeStr and writeNl.

1 import java.util.ArrayList;

2

3 public class Pointer<T> {

4 private ArrayList<T> memory;

51

5 private int position = 0;

6

7 public Pointer(int n) {

8 memory = new ArrayList<T>(n);

9 for (int i = 0; i < n; i++) {

10 memory.add(null);

11 }

12 }

13

14 public Pointer(Pointer<T> old, int displacement) {

15 memory = old.memory;

16 position = old.position + displacement;

17 }

18

19 public void free() {

20 memory.clear();

21 }

22

23 public T getValue(int offset) {

24 return memory.get(position + offset);

25 }

26

27 public void setValue(int offset, T value) {

28 memory.set(position + offset, value);

29 }

30

31 public int hashCode() { ... }

32 public boolean equals(Object obj) { ... }

33 }

Listing D.3: The Pointer class. It is used to encapsulate pointer
accesses.

d.2 testcases

In here, we show the output of some test cases. The code and graphs
are generated by the upcompiler without post-processing them. All
C programs are compiled with LLVM and optimization level 2. The
symbols of the binary are removed before upcompiling.

d.2.1 fibloop

This program asks the user for an number and calculates the corre-
sponding Fibonacci number within a loop.

52

Source

1 #include <stdio.h>

2

3 static int fib(int n){

4 int an1 = 0;

5 int an0 = 1;

6

7 for(int i = 0; i < n; i++){

8 int a = an0 + an1;

9 an1 = an0;

10 an0 = a;

11 }

12 return an1;

13 }

14

15 int main(){

16 int n, f;

17 printf("please enter nr: ");

18 scanf("%i", &n);

19 f = fib(n);

20 printf("the %ith fibonacci number is %i\n", n, f);

21 return 0;

22 }

53

After disassembling

0x8048480
22 EDX:22 := 'ESI'
23 ESI:23 := 'ECX'
24 ESI:24, C:24, P:24, A:24, Z:24, S:24, O:24 := ('ESI' + 'EDX')
25 EDI:25, P:25, A:25, Z:25, S:25, O:25 := ('EDI' - 1)
26 ECX:26 := 'EDX'
27 jump(('Z' == 0), [0x804848b, 0x8048480])

1

0x804848b
29 *('ESP' + 8) := 'EDX'
30 *('ESP' + 4) := 'EAX'
31 *('ESP' + 0) := 134514069
32 call 'printf'()
33 EAX:33, C:33, A:33, Z:33, S:33, O:33 := 0
38 return EAX::'EAX';

0

0x8048440

0 D:0 := 0
0 ESP:0 := phi()
0 EBP:0 := phi()
5 *('ESP' + 0) := 134514048
6 call 'printf'()
7 EAX:7 := ('EBP' + -12)
8 *('ESP' + 4) := 'EAX'
9 *('ESP' + 0) := 134514066

10 call '__isoc99_scanf'()
11 ECX:11, C:11, A:11, Z:11, S:11, O:11 := 0
12 EAX:12 := *('EBP' + -12)
13 C:13, P:13, A:13, Z:13, S:13, O:13 := ('EAX' and 'EAX')
14 jump((('Z' == 0) and ('S' == 'O')), [0x8048470, 0x8048474])

0x8048470
16 EDX:16 := 'ECX'
17 jump(0, [0x804848b])

0

0x8048474
19 ESI:19 := 1
20 EDI:20 := 'EAX'
21 0x804847b:NOP [EAX+EAX*10x0],

0 jump(0, [0x8048480])

1

0

0

54

After all low level phases except SSA destruction

0x8048480
-7 ESI:-7 := phi(0x8048480::(ECX:-1 + ESI:-7); 0x8048474::1;)
-3 EDI:-3 := phi(0x8048480::EDI:25; 0x8048474::lar_loc3_0:0;)
-1 ECX:-1 := phi(0x8048480::ESI:-7; 0x8048474::0;)
25 EDI:25 := (EDI:-3 - 1)
27 jump((EDI:25 != 0), [0x804848b, 0x8048480])

1

0x804848b
-6 EDX:-6 := phi(0x8048480::ESI:-7; 0x8048470::0;)
32 call f8048595(lar_loc3_0:0, EDX:-6)
38 return EAX::0;

0

0x8048440

6 call f8048580()
0 lar_loc3_0:0 := call readInt()

14 jump((lar_loc3_0:0 > 0), [0x8048470, 0x8048474])

0x8048470
17 jump(0, [0x804848b])

0

0x8048474
0 jump(0, [0x8048480])

1

0

0

0x8048580

1 call writeStr("please enter nr: ")
0 return

0x8048595
arg0:0 arg1:0

0 arg1:0 := phi()
0 arg0:0 := phi()
3 call writeStr("the ")
4 call writeInt(arg0:0)
5 call writeStr("th fibonacci number is ")
6 call writeInt(arg1:0)
7 call writeNl()
0 return

55

After structuring and normalization

1 public class UserPrg {

2 public Generic? main() {

3 Generic? tmp4 = 0;

4 Generic? tmp4_t = 0;

5 Generic? tmp5 = 0;

6 Generic? tmp5_t = 0;

7 Generic? tmp6 = 0;

8 Generic? tmp6_t = 0;

9 Generic? tmp7 = 0;

10 Generic? tmp8 = 0;

11 Generic? tmp9 = 0;

12 Generic? tmp9_t = 0;

13 func1();

14 tmp8 = IoSupport.readInt();

15 if((tmp8 > 0)) {

16 tmp4_t = 1;

17 tmp5_t = tmp8;

18 tmp6_t = 0;

19 do {

20 tmp4 = tmp4_t;

21 tmp5 = tmp5_t;

22 tmp6 = tmp6_t;

23 tmp7 = (tmp5 - 1);

24 tmp4_t = (tmp6 + tmp4);

25 tmp5_t = tmp7;

26 tmp6_t = tmp4;

27 tmp9_t = tmp4;

28 }

29 while((tmp7 != 0));

30 }

31 else tmp9_t = 0;

32

33 tmp9 = tmp9_t;

34 func0(tmp8, tmp9);

35 return 0;

36 }

37

38 public Generic? func0(Generic? tmp1, Generic? tmp0) {

39 IoSupport.writeStr("the ");

40 IoSupport.writeInt(tmp1);

41 IoSupport.writeStr("th fibonacci number is ");

42 IoSupport.writeInt(tmp0);

43 IoSupport.writeNl();

44 return ;

45 }

46

47 public Generic? func1() {

48 IoSupport.writeStr("please enter nr: ");

49 return ;

50 }

51

52 }

56

The final code

1 public class UserPrg {

2 public int main() {

3 int var0 = 0;

4 int var1 = 0;

5 int var2 = 0;

6 int var3 = 0;

7 int var4 = 0;

8 func1();

9 var4 = IoSupport.readInt();

10 if((var4 > 0)) {

11 var1 = 1;

12 var2 = var4;

13 var3 = 0;

14 do {

15 var0 = var1;

16 var2 = (var2 - 1);

17 var1 = (var3 + var1);

18 var3 = var0;

19 }

20 while((var2 != 0));

21 }

22 else var0 = 0;

23

24 var3 = var0;

25 func0(var4, var0);

26 return 0;

27 }

28

29 public void func0(int var0, int var1) {

30 IoSupport.writeStr("the ");

31 IoSupport.writeInt(var0);

32 IoSupport.writeStr("th fibonacci number is ");

33 IoSupport.writeInt(var1);

34 IoSupport.writeNl();

35 return ;

36 }

37

38 public void func1() {

39 IoSupport.writeStr("please enter nr: ");

40 return ;

41 }

42

43 }

57

d.2.2 fibrec

This program asks the user for a number and calculates the corre-
sponding Fibonacci number recursively.

Source

1 #include <stdio.h>

2

3 int fib(int n){

4 if(n < 2){

5 return n;

6 } else {

7 return fib(n-1) + fib(n-2);

8 }

9 }

10

11 int main(){

12 int n, f;

13 printf("please enter nr: ");

14 scanf("%i", &n);

15 f = fib(n);

16 printf("the %ith fibonacci number is %i\n", n, f);

17 return 0;

18 }

58

Output of the upcompiler

1 public class UserPrg {

2 public int main() {

3 int var0 = 0;

4 int var1 = 0;

5 func2();

6 var0 = IoSupport.readInt();

7 var1 = func0(var0);

8 func1(var0, var1);

9 return 0;

10 }

11

12 public int func0(int var0) {

13 int var1 = 0;

14 if((var0 < 2)) ;

15 else {

16 var1 = func0((var0 + -1));

17 var0 = func0((var0 + -2));

18 var0 = (var0 + var1);

19 }

20

21 return var0;

22 }

23

24 public void func1(int var0, int var1) {

25 IoSupport.writeStr("the ");

26 IoSupport.writeInt(var0);

27 IoSupport.writeStr("th fibonacci number is ");

28 IoSupport.writeInt(var1);

29 IoSupport.writeNl();

30 return ;

31 }

32

33 public void func2() {

34 IoSupport.writeStr("please enter nr: ");

35 return ;

36 }

37

38 }

59

d.2.3 fibdyn

This program asks the user for a number and calculates the corre-
sponding Fibonacci number with a dynamic allocated array.

Source

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 __attribute__ ((noinline))

5 void fib(int *data, int n){

6 data[0] = 0;

7 data[1] = 1;

8 for(int i = 2; i <= n; i++){

9 data[i] = data[i-1] + data[i-2];

10 }

11 }

12

13 int main(){

14 int n;

15 int *data;

16 printf("please enter nr: ");

17 scanf("%i", &n);

18 data = (int*)malloc(((n<2?2:n)+1) * sizeof(*data));

19 if(data == NULL){

20 printf("error by memory allocation\n");

21 return -1;

22 }

23 fib(data,n);

24 printf("the %ith fibonacci number is %i\n", n, data[n]);

25 free(data);

26 return 0;

27 }

60

Output of the upcompiler

1 public class UserPrg {

2 public int main() {

3 int var0 = 0;

4 int var1 = 0;

5 Pointer<Integer> var2 = null;

6 func2();

7 var1 = IoSupport.readInt();

8 var2 = new Pointer<Integer>((((var1 >= 2) ? ((var1 * 4) + 4) : 12

) / 4));

9 if((var2 != null)) {

10 func0(var2, var1);

11 func3(var1, var2.getValue(var1));

12 var2.free();

13 var0 = 0;

14 }

15 else {

16 func1();

17 var0 = -1;

18 }

19

20 return var0;

21 }

22

23 public void func0(Pointer<Integer> var0, int var1) {

24 int var2 = 0;

25 int var3 = 0;

26 Pointer<Integer> var4 = null;

27 var0.setValue(0, 0);

28 var0.setValue(1, 1);

29 if((var1 >= 2)) {

30 var2 = 0;

31 var3 = 1;

32 var1 = (var1 + -2);

33 var4 = new Pointer<Integer>(var0, 2);

34 var3 = (var3 + var2);

35 var4.setValue(0, var3);

36 while((var1 != 0)){

37 var2 = var4.getValue(-1);

38 var1 = (var1 - 1);

39 var4 = new Pointer<Integer>(var4, 1);

40 var3 = (var3 + var2);

41 var4.setValue(0, var3);

42 }

43 }

44

45 return ;

46 }

47

48 public void func1() {

49 IoSupport.writeStr("error by memory allocation");

50 IoSupport.writeNl();

51 return ;

52 }

53

54 public void func2() {

61

55 IoSupport.writeStr("please enter nr: ");

56 return ;

57 }

58

59 public void func3(int var0, int var1) {

60 IoSupport.writeStr("the ");

61 IoSupport.writeInt(var0);

62 IoSupport.writeStr("th fibonacci number is ");

63 IoSupport.writeInt(var1);

64 IoSupport.writeNl();

65 return ;

66 }

67

68 }

62

d.2.4 bubblesort

This programs reads values, sorts them and writes them to the output.
The examples shows the fallback mode of structuring and an array on
the stack.

Source

1 #include <stdio.h>

2 #define MAX_N 10

3

4 __attribute__ ((noinline))

5 void sort(int x[],int n) {

6 int switched = 1;

7

8 for(int i = 0; (i < n-1) && (switched == 1); i++) {

9 switched = 0;

10

11 for(int j = 0; j < (n-i-1); j++){

12 if(x[j] > x[j+1]) {

13 int tmp;

14 switched = 1;

15 tmp = x[j];

16 x[j] = x[j+1];

17 x[j+1] = tmp;

18 }

19 }

20 }

21 }

22

23 int main() {

24 int marks[MAX_N];

25 int i, n;

26

27 scanf("%i", &n);

28 n = n>MAX_N?MAX_N:n;

29 if(n == 0){

30 return -1;

31 }

32

33 for(i = 0; i < n; i++){

34 scanf("%i", &marks[i]);

35 }

36

37 sort(marks, n);

38

39 for(i = 0; i < n; i++){

40 printf("%i ", marks[i]);

41 }

42 printf("\n");

43

44 return 0;

45 }

63

After all low level phases except SSA destruction

0x804857a
57 call writeNl()
-1 jump(0, [0x8048588])

0x8048588
-1 EAX:-1 := phi(0x80484e0::4294967295; 0x804857a::0;)
25 return EAX::EAX:-1;

0

0x80484e0

0 lar_loc5_0:0 := call readInt()
12 ECX:12 := (lar_loc5_0:0 <= 10) ? lar_loc5_0:0 : 10
16 jump((ECX:12 == 0), [0x8048515, 0x8048588])

0x8048515
19 jump((ECX:12 <= 0), [0x8048519, 0x804853b])

0

1
0x804853b

42 call f8048470(@(loc6[0]), ECX:12)
44 jump((ECX:12 <= 0), [0x8048550, 0x804857a])

1

0x8048550
0 jump(0, [0x8048560])

0

0x8048519
0 jump(0, [0x8048520])

0x8048520
-15 ESI:-15 := phi(0x8048519::0; 0x8048520::ESI:34;)
-10 EDI:-10 := phi(0x8048519::@(loc6[0]); 0x8048520::(EDI:-10 + 4);)

0 *EDI:-10 := call readInt()
34 ESI:34 := (ESI:-15 + 1)
37 jump((ESI:34 < ECX:12), [0x804853b, 0x8048520])

0

0x8048560
-14 ESI:-14 := phi(0x8048560::ESI:52; 0x8048550::0;)
51 call f8048663(*((ESI:-14 * 4) + @(loc6[0])))
52 ESI:52 := (ESI:-14 + 1)
54 jump((ESI:52 < ECX:12), [0x804857a, 0x8048560])

0

1

0

1

0

0

1

64

0x80484c0
33 ECX:33 := (ECX:-11 + 1)
36 jump((ECX:33 >= EAX:6), [0x80484cc, 0x80484d1])

0x80484d1
26 return

1
0x80484cc

45 jump((ESI:-18 == 1), [0x80484d1, 0x8048490])

0

0x8048490
-11 ECX:-11 := phi(0x8048483::0; 0x80484cc::ECX:33;)
19 jump(0, [0x80484ba])

0x80484ba
-18 ESI:-18 := phi(0x8048490::0; 0x80484a0::ESI:-18; 0x80484ae::1;)

-9 EBX:-9 := phi(0x8048490::0; 0x80484a0::(EBX:-9 + 1); 0x80484ae::(EBX:-9 + 1);)
30 jump((EBX:-9 < (EAX:6 - ECX:-11)), [0x80484c0, 0x80484a0])

0

0x80484a0
38 EAX:38 := *((EBX:-9 * 4) + arg0:0)
39 ECX:39 := *((EBX:-9 * 4) + (arg0:0 + 4))
42 jump((EAX:38 <= ECX:39), [0x80484ae, 0x80484ba])

0x80484ae
47 *((EBX:-9 * 4) + arg0:0) := ECX:39
48 *((EBX:-9 * 4) + (arg0:0 + 4)) := EAX:38
-1 jump(0, [0x80484ba])

0

1

0x8048483
0 jump(0, [0x8048490])

0

0

0x8048470
arg0:0 arg1:0

0 arg1:0 := phi()
0 arg0:0 := phi()
6 EAX:6 := (arg1:0 - 1)
9 jump((EAX:6 <= 0), [0x8048483, 0x80484d1])

1

0

0 10

1

0x80486b3
arg0:0

0 arg0:0 := phi()
2 call writeInt(arg0:0)
3 call writeStr(" ")
0 return

0x8048663
arg0:0

0 arg0:0 := phi()
2 call writeInt(arg0:0)
3 call writeStr(" ")
0 return

65

Output of the upcompiler

1 public class UserPrg {

2 public int main() {

3 int var0 = 0;

4 int var1 = 0;

5 int var2 = 0;

6 int var3 = 0;

7 Pointer<Integer> var4 = null;

8 Pointer<Integer> var5 = new Pointer<Integer>(10);

9 var2 = IoSupport.readInt();

10 var2 = ((var2 <= 10) ? var2 : 10);

11 var1 = -1;

12 if((var2 != 0)) {

13 if((var2 > 0)) {

14 var0 = 0;

15 var4 = new Pointer<Integer>(var5, 0);

16 do {

17 var4.setValue(0, IoSupport.readInt());

18 var0 = (var0 + 1);

19 var4 = new Pointer<Integer>(var4, 1);

20 }

21 while((var0 < var2));

22 }

23

24 func0(new Pointer<Integer>(var5, 0), var2);

25 if((var2 > 0)) {

26 var3 = 0;

27 do {

28 func1(var5.getValue(var3));

29 var3 = (var3 + 1);

30 }

31 while((var3 < var2));

32 }

33

34 IoSupport.writeNl();

35 var1 = 0;

36 }

37

38 return var1;

39 }

40

41 public void func0(Pointer<Integer> var0, int var1) {

42 int var2 = 0;

43 int var3 = 0;

44 int var4 = 0;

45 int var5 = 0;

46 int var6 = 0;

47 int var7 = 0;

48 int var8 = 0;

49 int var9 = 0;

50 int var10 = 0;

51 var2 = 0;

52 while(true)switch(var2){

53 case 0x0: {

54 {

55 var9 = (var1 - 1);

66

56 var2 = ((var9 <= 0) ? 4 : 1);

57 }

58 break;

59 }

60 case 0x1: {

61 {

62 var6 = 0;

63 var2 = 2;

64 }

65 break;

66 }

67 case 0x2: {

68 {

69 var5 = var6;

70 var10 = 0;

71 var4 = 0;

72 var3 = var4;

73 while((var4 < (var9 - var5))){

74 var7 = var0.getValue(var4);

75 var8 = var0.getValue((1 + var4));

76 var4 = (var4 + 1);

77 if((var7 > var8)) {

78 var0.setValue(var3, var8);

79 var0.setValue((1 + var3), var7);

80 var10 = 1;

81 var4 = (var3 + 1);

82 }

83

84 var3 = var4;

85 }

86 var5 = (var5 + 1);

87 var2 = ((var5 >= var9) ? 4 : 3);

88 }

89 break;

90 }

91 case 0x3: {

92 {

93 var6 = var5;

94 var2 = ((var10 == 1) ? 2 : 4);

95 }

96 break;

97 }

98 case 0x4: {

99 return ;

100 }

101 }

102 }

103

104 public void func1(int var0) {

105 IoSupport.writeInt(var0);

106 IoSupport.writeStr(" ");

107 return ;

108 }

109

110 }

67

	Introduction
	Problems
	Scope

	Related Work
	Implementation
	Low level phases
	Disassembler
	Variable linking
	Function linking
	Condition code reconstruction
	Stack variable recovery
	Expression reduction
	Function replacement
	Replacing arrays with variables
	SSA destruction

	High level phases
	Structuring
	Linking
	Statement normalization
	Reconstructing types
	Pointer access encapsulation
	Coalescing
	Expression normalization
	Generating Java code

	Evaluation
	Discussion
	Function pointers
	Function argument reconstruction
	Non returning functions
	Jump tables
	Structuring
	Stack variables
	Library calls
	Tail calls
	Aliasing of registers
	SSA as intermediate representation
	Coalescing unrelated variables
	Semantic gap
	Obfuscation and optimization
	Functional programming languages

	Performance
	Upcompiler
	Programs

	Conclusion and future work
	Conclusion
	Future Work
	Type recovery
	Generality
	Optimization and code metrics

	Bibliography
	Listings
	List of Figures
	Appendix
	Glue code
	Testcases
	fibloop
	fibrec
	fibdyn
	bubblesort

