
Process Swapping in UNIX V6
Lions’ commentary chapter 14 in detail

Urs Fässler

Systems Group
ETH Zürich

20.04.2010

Urs Fässler Swapping 1 / 18

why writing RAM to a disc?

small device with 16 MB RAM and a Hard disc

want organise thousands of Mp3 on it

! database doesn’t fit into RAM

⇒ use virtual memory

WL-HDD (www.asus.com)

OpenJukebox (openjukebox.origo.ethz.ch)

Urs Fässler Swapping 2 / 18

http://www.asus.com/999/html/events/communication/wireless/wl-hdd25/overview.htm
http://openjukebox.origo.ethz.ch

why writing RAM to a disc?

small device with 16 MB RAM and a Hard disc

want organise thousands of Mp3 on it

! database doesn’t fit into RAM

⇒ use virtual memory

WL-HDD (www.asus.com) OpenJukebox (openjukebox.origo.ethz.ch)

Urs Fässler Swapping 2 / 18

http://www.asus.com/999/html/events/communication/wireless/wl-hdd25/overview.htm
http://openjukebox.origo.ethz.ch

why writing RAM to a disc?

small device with 16 MB RAM and a Hard disc

want organise thousands of Mp3 on it

! database doesn’t fit into RAM

⇒ use virtual memory

WL-HDD (www.asus.com) OpenJukebox (openjukebox.origo.ethz.ch)

Urs Fässler Swapping 2 / 18

http://www.asus.com/999/html/events/communication/wireless/wl-hdd25/overview.htm
http://openjukebox.origo.ethz.ch

why writing RAM to a disc?

small device with 16 MB RAM and a Hard disc

want organise thousands of Mp3 on it

! database doesn’t fit into RAM

⇒ use virtual memory

WL-HDD (www.asus.com) OpenJukebox (openjukebox.origo.ethz.ch)

Urs Fässler Swapping 2 / 18

http://www.asus.com/999/html/events/communication/wireless/wl-hdd25/overview.htm
http://openjukebox.origo.ethz.ch

types of virtual memory

Nothing Swapping Segmentation Paging

No Hardware Support MMU

Process Size ≤ Memory Process Size is Unlimited

1 Process Time Sharing

DOS UNIX V6 MULTICS modern OS

Urs Fässler Swapping 3 / 18

types of virtual memory

Nothing Swapping Segmentation Paging

No Hardware Support MMU

Process Size ≤ Memory Process Size is Unlimited

1 Process Time Sharing

DOS UNIX V6 MULTICS modern OS

Urs Fässler Swapping 3 / 18

types of virtual memory

Nothing Swapping Segmentation Paging

No Hardware Support MMU

Process Size ≤ Memory Process Size is Unlimited

1 Process Time Sharing

DOS UNIX V6 MULTICS modern OS

Urs Fässler Swapping 3 / 18

types of virtual memory

Nothing Swapping Segmentation Paging

No Hardware Support MMU

Process Size ≤ Memory Process Size is Unlimited

1 Process Time Sharing

DOS UNIX V6 MULTICS modern OS

Urs Fässler Swapping 3 / 18

types of virtual memory

Nothing Swapping Segmentation Paging

No Hardware Support MMU

Process Size ≤ Memory Process Size is Unlimited

1 Process Time Sharing

DOS UNIX V6 MULTICS modern OS

Urs Fässler Swapping 3 / 18

types of virtual memory

Nothing Swapping Segmentation Paging

No Hardware Support MMU

Process Size ≤ Memory Process Size is Unlimited

1 Process Time Sharing

DOS UNIX V6 MULTICS modern OS

Urs Fässler Swapping 3 / 18

swapping versus paging

swapping paging
older modern
easy complicated

whole process parts of the memory
proc size < RAM arbitrary proc size

no special hardware MMU

Urs Fässler Swapping 4 / 18

swapping versus paging

swapping paging
older modern
easy complicated

whole process parts of the memory
proc size < RAM arbitrary proc size

no special hardware MMU

Urs Fässler Swapping 4 / 18

swapping versus paging

swapping paging
older modern
easy complicated

whole process parts of the memory
proc size < RAM arbitrary proc size

no special hardware MMU

Urs Fässler Swapping 4 / 18

MMU - Memory Management Unit

paging needs a MMU

integrated in modern CPU such as ARM, IA-32, MIPS

basic operation of paging is defined by the MMU

www.wikipedia.org

Urs Fässler Swapping 5 / 18

http://en.wikipedia.org/wiki/Memory_management_unit

OS tasks in a paging system

creation of a process

create pages
copy text and data into pages

set a process running

initializing MMU
switch actual page to new process

page fault

find page on swap
find free frame in RAM
copy page into frame
restart last instruction

after termination of a process

free frames in RAM
free pages on swap

Urs Fässler Swapping 6 / 18

OS tasks in a paging system

creation of a process

create pages
copy text and data into pages

set a process running

initializing MMU
switch actual page to new process

page fault

find page on swap
find free frame in RAM
copy page into frame
restart last instruction

after termination of a process

free frames in RAM
free pages on swap

Urs Fässler Swapping 6 / 18

OS tasks in a paging system

creation of a process

create pages
copy text and data into pages

set a process running

initializing MMU
switch actual page to new process

page fault

find page on swap
find free frame in RAM
copy page into frame
restart last instruction

after termination of a process

free frames in RAM
free pages on swap

Urs Fässler Swapping 6 / 18

OS tasks in a paging system

creation of a process

create pages
copy text and data into pages

set a process running

initializing MMU
switch actual page to new process

page fault

find page on swap
find free frame in RAM
copy page into frame
restart last instruction

after termination of a process

free frames in RAM
free pages on swap

Urs Fässler Swapping 6 / 18

OS tasks in a swapping system (UNIX V6)

creation of a process

swap new process out if it doesn’t fit in RAM

process size is increased

swap process out if it don’t fit in RAM anymore

swapper is triggered to do something

swap oldest process in (if enough RAM is available)
otherwise swap an inactive process out

Urs Fässler Swapping 7 / 18

OS tasks in a swapping system (UNIX V6)

creation of a process

swap new process out if it doesn’t fit in RAM

process size is increased

swap process out if it don’t fit in RAM anymore

swapper is triggered to do something

swap oldest process in (if enough RAM is available)
otherwise swap an inactive process out

Urs Fässler Swapping 7 / 18

OS tasks in a swapping system (UNIX V6)

creation of a process

swap new process out if it doesn’t fit in RAM

process size is increased

swap process out if it don’t fit in RAM anymore

swapper is triggered to do something

swap oldest process in (if enough RAM is available)
otherwise swap an inactive process out

Urs Fässler Swapping 7 / 18

study of the code

original code is not very readable

automated formatted with bcpp

refactored by hand to improve code metrics

of goto: from 11 to 0
split sched (100 lines) into 9 functions (and moved to sched.c)
used strong typing

generated documentation with Doxygen

Urs Fässler Swapping 8 / 18

study of the code

original code is not very readable

automated formatted with bcpp

refactored by hand to improve code metrics

of goto: from 11 to 0
split sched (100 lines) into 9 functions (and moved to sched.c)
used strong typing

generated documentation with Doxygen

Urs Fässler Swapping 8 / 18

study of the code

original code is not very readable

automated formatted with bcpp

refactored by hand to improve code metrics

of goto: from 11 to 0
split sched (100 lines) into 9 functions (and moved to sched.c)
used strong typing

generated documentation with Doxygen

Urs Fässler Swapping 8 / 18

study of the code

original code is not very readable

automated formatted with bcpp

refactored by hand to improve code metrics

of goto: from 11 to 0
split sched (100 lines) into 9 functions (and moved to sched.c)
used strong typing

generated documentation with Doxygen

Urs Fässler Swapping 8 / 18

call graph

sched

schedule

swapOut swapIn

xswap xalloc xfree

Urs Fässler Swapping 9 / 18

sched - waiting for changes

RUNIN RUNOUT

wakeup RUNIN

schedule()

wakeup RUNOUT

schedule()wakeup RUNIN

schedule()

wakeup RUNOUT

schedule()

schedule is looped until it returns something else than
RESCHEDULE

RUNOUT: no swapped process is ready to run
RUNIN: process can’t yet be swapped in

Urs Fässler Swapping 10 / 18

sched - waiting for changes

RUNIN RUNOUT

wakeup RUNIN

schedule()

wakeup RUNOUT

schedule()wakeup RUNIN

schedule()

wakeup RUNOUT

schedule()

schedule is looped until it returns something else than
RESCHEDULE

RUNOUT: no swapped process is ready to run
RUNIN: process can’t yet be swapped in

Urs Fässler Swapping 10 / 18

sched : schedule - process swapper

schedule

Process ready?

malloc succeeded?

swapIn() swapOut() RUNOUT

yes

no

yes

no

Urs Fässler Swapping 11 / 18

sched : schedule : swapIn

swapIn

Text in RAM?

swap Text in

swap Data in

free swap Data

RESCHEDULE

no

yes

Urs Fässler Swapping 12 / 18

sched : schedule : swapOut

swapOut

any Proc stopped?

any Proc
swappable?

xswap(Proc)

RESCHEDULE RUNIN

no

yes no

yes

Urs Fässler Swapping 13 / 18

sched : schedule : swapOut : xswap - swap a process out

xswap

allocate swap

swap Data out

free Data
(RAM)

wakeup
RUNOUT

Urs Fässler Swapping 14 / 18

xalloc - copy text from disc to swap

xalloc

Text in swap?

allocate swap

swap Text out

refcount++

no

yes

Urs Fässler Swapping 15 / 18

xfree - remove link to text

xfree

refcount- -

refcount = 0

free Text
(RAM)

free Text
(swap)

yes

Urs Fässler Swapping 16 / 18

comparison to modern coding style

don’t use goto (at most for exceptions)

write small subroutines for specific functionality

use meaningful variable names

use an ANSI C compiler

don’t optimize (let the compiler do it)
use strong typing
define a interface (headerfile) to the implementation

Urs Fässler Swapping 17 / 18

comparison to modern coding style

don’t use goto (at most for exceptions)

write small subroutines for specific functionality

use meaningful variable names

use an ANSI C compiler

don’t optimize (let the compiler do it)
use strong typing
define a interface (headerfile) to the implementation

Urs Fässler Swapping 17 / 18

comparison to modern coding style

don’t use goto (at most for exceptions)

write small subroutines for specific functionality

use meaningful variable names

use an ANSI C compiler

don’t optimize (let the compiler do it)
use strong typing
define a interface (headerfile) to the implementation

Urs Fässler Swapping 17 / 18

about

find the slides, handout, refactored source and more on
http://n.ethz.ch/~ursf/

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/.
You are free:

to Share to copy, distribute and transmit the work

to Remix to adapt the work resulting work only under the same or similar license to this one.

Under the following conditions:

Attribution You must cite the author’s name.

Noncommercial You may not use this work for commercial purposes.

Share Alike If you alter, transform, or build upon this work, you may distribute the resulting work only
under the same or similar license to this one.

Urs Fässler Swapping 18 / 18

http://n.ethz.ch/~ursf/
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
http://creativecommons.org/licenses/by-nc-sa/3.0/

