Vidyaa — Optimization Made Easy

Nicolas Riiegg, Urs Fassler

November 25, 2012

Abstract

Vidyaa is a tool for the optimization of parameter values. What the individual
parameters represent is of no interest to the program itself which allows to opti-
mize a neural network as well as the hardware parameters of a certain machine
or any other set of parameters.

To distinguish how good a set of parameter values is, the parameters are
tested using an external, user-defined program. This simulation software then
returns a so called fitness value which is used by Vidyaa to decide on its further
steps.

The optimization algorithm used can be freely selected by the experimenter
and unlike most other optimization tools, Vidyaa allows the combination of
several algorithms for the optimization. For instance, it is possible to optimize
some parameters with an evolutionary algorithm, and some other parameters
with a simulated annealing algorithm.

The user defines the optimization task by configuring so called experiments.
These experiments can be combined in a hierarchical structure which allows the
optimization of parameters on different levels with different algorithms.

This documentation is split into two parts:

e The User Manual describes how Vidyaa is used to get the desired results.
It also describes the basic design of the software as far as it is necessary
to the usage of Vidyaa.

e The Programmer Manual describes the architecture of Vidyaa and how
extensions are implemented. It gives an overview of the most important
concepts of Vidyaa. Although it discusses some implementation issues,
it is not a replacement for the detailed documentation of the individual
classes and their members. The detailed documentation of the classes and
their members can be found on http://vidyaa.origo.ethz.ch/

It is strongly recommended to read the User Manual first. It is frequently
referenced and some concepts already commented on are not further ex-
plained in the Programmer Manual.

Contents

IL__User Manuall

[L System Requirements|

[2.2 The Experiment Types|.

2.3 xperiment Configuration|

[3__Available Optimization Algorithms|

3.1 1mulate nnealing)

3.2 Evolutionary Algorithm|o v v ..

3.3 Systematic Algorithml

4 Using Vidyaa)

4.1 Designing an Experiment|

4.1.1 Specity the Parameters|

4.1.2 Specity the Experiments|

4.2 Setting up an Experiment|o 000000

4.2.1 One-stage Experiment|

4.2.2 Two-stage Experiment|

4.2.3 Array Experiment| 0oL

4.2.4 Settings to the Algorithms|.

4.3 Running an Experiment| o000

[4.3.1 BExamples| . .

-4 Evaluating the Results of an Experiment|.

(II' Programmer Manual

B Archi O owl
[p.1 Basic Concepts| . . .

[F.2 Programming Language and Libraries|

.3 Source Directory Structuref o L.

(6 Interface to the Simulator]

13
13
13
14
15
15
16
18
19
22
22
22

24

25
25
25
27

[7__Extending Vidyaa)

[71 Tmplementation of an Optimization Algorithm|
7.2 Implementation of an Experiment Typel

Part 1

User Manual

Chapter 1

System Requirements

Vidyaa is known to work on the following platforms:
e Hardware

— x86 architecture, 32 / 64 Bit
— 512 MB Ram

e Operating System

— Ubuntu
— Debian GNU/Linux
e Libraries
— gsl
— gslcblas
— xml++-2.6
— xml2
— glibmm-2.4
— gobject-2.0
— sige-2.0
— glib-2.0
e Compiler

— GNU C++ Compiler, Version 4

Chapter 2

Architecture Overview

This chapter describes the basic design of the software as far as it is necessary
to the usage of Vidyaa. For a detailed documentation on the architecture, have
a look at the Programmer Manual.

2.1 The Basic Idea

In Vidyaa, the user defines the optimization task by configuring so called exper-
iments. An experiment contains the parameters to optimize and the algorithm
to use for the optimization. Experiments can be combined in a hierarchical
structure to allow the optimization of different parameters with different al-
gorithms. From this follows that for every step of an experiment, the entire
sub-experiment is conducted, too. This is illustrated in figure [2.1

Experiment

For each step in experiment,
 the set of the current parameter values
" s handed to the sub—experiment,

Parametert
Parameterz

Parametert: x ~ J
Parameterz: y ,
2, Parametert: x

Parameterz: y

Parameters: =z

Parameters: 4 Simulation/ Test

~eo
~

Sub—Experiment
Parameters
Parameter4

3, The entive set of the current
parameter values is tested
and a fitness value is returned

Figure 2.1: The optimization process

The experiment on the first level creates a set of parameter values and passes
them to its sub-experiment. The sub-experiment then extends this set of param-

eter values and finally passes them to a simulator (or test program), which tests
the current values and returns a fitness value. Based on the fitness value, the
sub-experiment decides on its next step. When the sub-experiment is finished,
it returns a fitness value to the experiment on the next higher level, which then
also decides on its next step.

To put it differently, experiments pass their current parameter values to their
sub-experiments. That is, a set of parameter values is passed down the hierarchy
until it ends with a test of the parameter values. Every level in between can
add or modify something.

This basic idea was implemented by using different types of experiments
which are described in the next section.

2.2 The Experiment Types

In Vidyaa, the idea of an experiment usually is as follows:

First of all, by conducting an experiment, we usually optimize parameters
of a given system. Whether that system is a robot or a neural network or any
other optimizable set of parameters does not matter.

Second, we would like to be able to conduct optimization tasks within other
optimization tasks. That is, we need an architecture where an experiment can
contain other experiments and an experiment returns a value which can be used
by the higher level experiments to make decisions. To achieve this, three basic
types of experiments were defined: Algorithm Experiments, Array Experiments
and Simulator Experiments.

In general, every type of experiment produces at least a fitness value as
output. This fitness value is then used by the higher level experiment to make
its decisions.

An Algorithm Experiment usually does the actual optimization. It expects a
map of parameters with their range as input and produces a map of parameters
with their values as output. The algorithm itself determines in which way the
parameters are changed. So far, three algorithms were implemented: Simulated
Annealing, an Evolutionary Algorithm and a Systematic Algorithm.

An experiment of type Array contains several experiments on the same hier-
achy level and defines how to handle the returned fitness values of the individual
experimentsﬂ For instance, it computes the average of the fitness values of the
experiments it contains and returns this as its own fitness value.

Finally, an experiment of type Simulation is the actual test of the previously
produced parameter values. The map of parameter values is written to a file
and an external program is called which tests these values and returns at least a
fitness value. This fitness value is then returned to the experiment on the next
higher level. The Simulation Ezperiment is settled on the lowest level of the
hierarchy and is necessary, to get a measurement for the quality of the current
parameter values.

As an example, an Algorithm Ezperiment containing three other Algorithm
Ezperiments of which each contains a Simulation Experiment, is represented in
the hierarchy as shown in figure

1Some say, FEzperimentContainer would have been a more accurate name.

AlgorithmExperiment
(Evolutionary)

ArrayExperiment

AlgorithmExperiment AlgorithmExperiment AlgorithmExperiment
(SimulatedAnnealing) (SimulatedAnnealing) (SimulatedAnnealing)
v
SimulatorExperiment SimulatorExperiment

\&)raperi ment

Figure 2.2: Hierarchy of the experiment types

At first glance, it might seem disturbing that these types are all called ”ex-
periment” | although they mean different things. But if we refer to an optimiza-
tion process as an experiment, it is indeed accurateﬂ

2.3 Experiment Configuration
The configuration of the experiment hierarchy is given by an XML configuration

file. A typical configuration file which defines an Algorithm Experiment within
another Algorithm Experiment is shown in listing [2.1

2In case you disagree, just ignore it and accept the fact, that there are three different types
of experiments.

<?xml version="1.0" encoding="UTF-8” 7>

<!—— the root node is always setting ——>

<setting
name=" Exploration_.of_.the_.parameters”
version="1.0"
xmlns="http://ailab.ifi.uzh.ch/framework/2008/”
xmlns:evol="http://ailab.ifi.uzh.ch/framework/2008/algorithm/evolution/”
xmlns:siman="http://ailab.ifi.uzh.ch/framework/2008/algorithm/simulatedannealing/”

xmlns:systematic="http://ailab.ifi.uzh.ch/framework/2008/algorithm /systematic/” >
<!—— define the highest level ezperiment as an AlgorithmEzperiment conducted with
the evolutionary algorithm ——>

<algorithm type="Evolution”>

<!—— configuration of the evolutionary algorithm ——>
<evol:config

changeprobability="0.50”

distribution="gaussian”

population="50"

parents="5"

generations="10"

selection="leaders”

elitism="on” />

<!—— parameters to optimize in this experiment ——>
<parameters>
<param name="FrontFemurLength” min="0.05" max="0.12" />
<param name="FrontTibiaLength” min="0.05" max="0.12"/>
<param name=" HindFemurLength” 0.05” max="0.12"/>
<param name="HindTibiaLength?” 0.05” max="0.12" />
</parameters>

<l—— a sub—ezperiment ——>
<algorithm name="sub—experiment” version="1.0" type="Simulated_Annealing”>

<!—— configuration of the simulated annealing algorithm ——>
<siman:config

inittemperature="16"

terminatetemperature="2"

bestfitness="1.0"

cooling="0.95" />

<!—— parameters to optimize in this sub—ezperiment ——>
<parameters>
<param name=" C_Frequency” min="0.5" max="4"/>

<param name="C_Amp-F” min=" —0.5” max="0.5" />

<param name="C_Amp-H” min=" —0.5” max="0.5" />
</parameters>
<!—— the simulation software ——>
<simulation program="../../ puppy-simulator/src/puppySimulator” />

</algorithm>
</algorithm>
</setting>

Listing 2.1: experiment.xml

As the listing demonstrates, the hierarchy of the experiments is also re-
spected in the configuration file. More details on how to configure an experiment
can be found in chapter

2.4 Interface to the Simulator

Basically, the parameter values are tested in a completely serparated program
which could also be executed as a standalone application. This program is called
”the simulator”. By definition, it takes an input file and returns an output file.

As indicated in figure the simulation software is called by Vidyaa with
the two arguments INPUTFILE and OUTPUTFILE. In this specific example, the
input file is parameters.txt (see listingfor an example) and the output file
is results.txt (see listing for an example). These arguments specify from
which file the parameters and their values are read and in which file the results
are written by the simulation software. From Vidyaa’s point of view, this means
the parameters are written into the INPUTFILE and the return values are read
from the OUTPUTFILE.

Of course, the simulator needs to understand the parameters defined in the
INPUTFILE. That is, if we specify a parameter named PuppyWidth, the simulator

needs to know what to do with this parameter and how to apply its value
internally.

PuppyLength 0.12
PuppyWidth 0.05
FrontFemurLength 0.0614236
FrontTibiaLength 0.0806978
HindFemurLength 0.119857
HindTibiaLength 0.0660368
C_Frequency 2.5

Listing 2.2: parameters.txt

Like the input file, the result file can contain strings and a corresponding
value (for instance a parameter and its value). The only constraint is, that it
must contain at least a parameter called fitness and the corresponding value.
This is the fitness value which is returned to the next higher level.

fitness 1.079
speed 2.45
energy 12.348

Listing 2.3: results.txt

Since the simulation software is completely separated from Vidyaa, the sim-
ulation can do whatever it likes as long as it respects the interface.

Usually, the simulator has to be programmed by the user. Most of the time,
the user will just write a small program to implement the interface to external
applications such as a physics simulator or an application for the simulation of
robots. Details on how to write a simulator can be found in section [6.3

1. start of an experiment

»
»

2. writes

4. reads 6. reads

Simulator

parameters., Txt

5. writes

L results, txt

includes fitness value

Figure 2.3: Interface between Vidyaa and the simulator

Chapter 3

Available Optimization
Algorithms

3.1 Simulated Annealing

Simulated annealing is an algorithm to locate a good approximation to the
global minimum of a given function.

The following definition is taken from wikipedia[l] and is a good description
of the basic idea:

Each step of the simulated annealing algorithm replaces the current
solution by a random ”nearby” solution, chosen with a probability
that depends on the difference between the corresponding function
values and on a global parameter T (called the temperature), that is
gradually decreased during the process. The dependency is such that
the current solution changes almost randomly when T is large, but
increasingly ”downhill” as T goes to zero. The allowance for ”uphill”
moves saves the method from becoming stuck at local minima —
which are the bane of greedier methods.

Currently, there are two different versions of the simulated annealing al-
gorithm implemented. The advanced version called ”simulated annealing” is
described in detail in [2].

The second version is simpler and thus called ”textbook simulated anneal-
ing”.

In this second version, an error function F(py) of the parameters py, is needed.
It quantifies the error and is defined as follows:

Elpp) = 1- (%) (3.1)

Whereas F (py) is the fitness value of the parameters and Fy, is the best possible
fitness value.

The algorithm stops when the best fitness value or the termination temper-
ature T} is reached.

10

The aim of the algorithm is to reduce the error to zero. In each step, the
new set of parameter values pj, is calculated as follows:

r= Tk * (rmax - rmin) (32)
R= [max (pk - %, rmin) >min (pk + %7 7nmax)] (33)
P = z(R) (3.4)

Described in words, this means r is the range of values of the parameter scaled

with the current temperature. In equation [3.3] the interval R is defined. It is

close to the previous value p; and limited to the range of the parameter. Finally,

the new parameter value pj is randomly selected from the interval R.
Subsequently, the change of the error is calculated:

AE = E(p) — E(px) (3-5)

To decide whether the new parameter values are used or the old ones should
be kept, a probability is calculated:

1 for AE <0

3.6
exp (—%) for AE >0 (36)

p(AE) = {

According to the following equation, the calculated probality is the proba-
bility, with which pj, is chosen as the new parameter value:
p, for z([0,1)) < p(AE
Dt — { o for 2 ([0,1)) < p(AE) 52)
pr else

Finally, the new temperature is calculated as Ty41 = T} *y whereas « is the
cooling constant.

3.2 Evolutionary Algorithm

|I|The evolutionary algorithm is based on the principles of the evolutionary theory.

Every generation contains a certain number of individual&ﬂ of which some
are selected as parents. Mutations (children) of the parents create the next
generation.

The fitness of an individual is determined by simulating it with the program
specified by the user. The higher its fitness, the higher its chance of becoming
a parent.

There are two different algorithms to select the parents. With the leaders
algorithm, the parents are randomly chosen from the fittest NV individuals. If
the roulette algorithm is used, the parents are randomly chosen from the entire
generation. The normalized fitness value of every individual is the probability
with which an individual is selected as a parent. Individuals with a high fitness
value are more likely to become parents (even more than once) than individuals
with a low fitness value.

1That is not entirely true: Unlike nature, this implementation just uses mutation and no
cross-over.
2In our case an individual is a set of parameter values.

11

Additionally, the algorithm exhibits a so called elitism switch. If elitism is
on, the very best individual of every generation is copied to the next generation
without being mutated.

Each parameter of a parent has a preset chance of being mutated. If a
parameter is mutated, it is calculated as follows:

Be p, a parent and p. a child then:

1= (Tmax — Tmin) * (3.8)
pe= pptaa)*xp (3.9)

Whereas rmin and rmax are the minimum and maximum values for the cur-
rent parameter. The function z4() is a random number generator with the
distribution d. Equation [3.9]is repeated until p. € [Fmin, "max)-

The parameter values of the first generation are uniformly distributed over
the entire search space.

3.3 Systematic Algorithm

Unlike the previously described algorithms, the systematic algorithm is not an
optimization algorithm.

Testing every possible combination of parameters is done by systematically
increasing the value of the free parameters until every combination has been
tried. This is very time consuming with many free parameters and should be
avoided for more than three free parameters.

Figure [3.1] shows the distribution of the fitness values of a system with two
free parameters and 13 steps per parameter.

w0 00000000
2000000000
0@ 00000000
00000000 e
000000000 o
00000000 e
000000000
10000000000
QOO0 0O0 0o
Q00 ®0 00 o
©O O 00 0 o
©O O O © 0 o

o 0 0 O

o

1

o © 0 © 0 O

60

@)
o o 0 0 OO OO

o
o
o

o
o

@]

o
o

20
o o o

@)
o
o

o

o [¢]

040 0 0 ©6 © o o o

T T T T T T
0 20 40 60 80 100

Figure 3.1: Analysis of a systematic experiment. The bigger the circle, the
bigger the fitness value at this position.

12

Chapter 4

Using Vidyaa

4.1 Designing an Experiment

Before we can use Vidyaa to optimize parameters, we need to set up the op-
timization task by designing the experiments. The design of the experiments
should be done very carefully. Logical errors in the design of the experiments
lead to useless results and possibly the loss of days of computing time.

The following sections lead the way to a complete run of an optimization
task and should be considered as a guideline.

4.1.1 Specify the Parameters

First of all, we need to know which parameters we would like to optimize and
we must specify a value range for each parameter (it is also possible to set a
fixed value for a parameter).

Let us assume, we have a robot and we would like to optimize some body
parameters like the length of the legs as well as some controller parameters like
the amplitude of the leg movements. That is, what we actually want is a robot
which moves as wel]E] as possible. A possible list of parameters for this scenario
is shown in table .11

17 Well” stands for fast, stable or whatever is desired.

Parameter Range

FrontLegLength 0.10 — 0.50
HindLegLength 0.10 — 0.50
BodyLength 0.50 — 0.75
BodyWidth 0.20 - 0.30

FrontLegAmplitude | 0.0 — 1.0
HindLegAmplitude | 0.0 — 1.0
LegFrequency 1.0 -3.0
HindLegPhaseLag 0.5

Table 4.1: Parameters to optimize

13

4.1.2 Specify the Experiments

But defining a list of parameters to optimize is not sufficient yet. We also need
to know in which way and which order these parameters should be optimized by
Vidyaa. To put it differently, we need to define the hierarchy of the experiments.

The easiest way to optimize the set of parameters would be to define a single
experiment, which optimizes the parameters with a specified algorithm. In this
case, it might be an experiment using an evolutionary algorithm to optimize the
given parameters.

A more natural design would be a two-stage experiment where a robot is
born with certain body parameters and tries to develop a way to move as well as
possible under the given circumstances. This could be achieved by defining an
experiment within another experiment. The top-level experiment optimizes the
body parameters using an evolutionary algorithm and calls its sub-experiment
for every individual it creates. The sub-experiment then optimizes the con-
troller parameters using a simulated annealing algorithm, for instance. Based
on its sub-experiment’s return values, the top-level experiment then decides
which individuals survive and which do not. This design of the experiments is
demonstrated in figure

experiment
(evolutionary algorithm)
Body parameters

sub-experiment
(simulated annealing)
Controller parameters

Figure 4.1: Experiment containing another experiment

One could also imagine a scenario, where an experiment does not just contain
one sub-experiment, but several sub-experiments on the same level. This can
be done in Vidyaa, too, and is implemented with the already introduced Array
Ezperiment. An Array Ezperiment is illustrated in figure

Experiment
(evolutionary)

sub-experiment
(array experiment)

sub sub-experiment sub sub-experiment sub sub-experiment
(simulated annealing) (simulated annealing) (simulated annealing)

Figure 4.2: Experiment containing several experiments

Last but not least, we need to know how we would like to test our parame-
ters. This is the lowest level of the experiment hierarchy and it is usually done
in a separate program, which is automatically called by Vidyaa for every set
of parameters. This is called Simulator Experiment and every series of exper-

14

iments must have a Simulator Experiment on its lowest level. Otherwise, the
parameters could never be tested.

4.2 Setting up an Experiment

As follows from the preceding sections, three types of experiments are available.
They all have in common, that the experiments on the higher level pass them
their current parameter values. That is, a set of parameter values is handed
down the hierarchy until it ends with a SimulationExperiment. Every level in
between can add or modify something.

Algorithm Experiment Modifies (e.g. optimizes) a set of parameters and
passes it to its sub-experiment. This is done for each step of the used
algorithm.

An Algorithm Ezperiment can contain any other type of experiment.
Array Experiment Contains several experiments on the same level. Defines

how to handle their fitness values.

An Array Ezperiment can contain any other type of experiment.
Simulation Experiment Tests a set of parameters. It writes the parameters

into a file and calls an external program. The return values from the

external program are read from a file. A SimulationExperiment is settled
on the lowest level of the hierarchy and does not have any sub-experiments.

Using these experiment types, we can set up the entire optimization process
in an XML configuration file. Since examples are less abstract than formal
descriptions we suggest to look at a few specific experiments before we go into
the details.

4.2.1 One-stage Experiment

A one-stage experiment is an experiment, where all the parameters are optimized
on the same stage using the same algorithm. An example is shown in figure

AlgorithmExperiment
(evolutionary)

SimulatorExperiment

Figure 4.3: One-stage optimization

The corresponding configuration file is shown in listing

15

1 <?xml version="1.0" encoding="UTF-8” 7>

2

3 |<setting

4 name="A_one—stage_experiment”

5 version="1.0"

6 xmlns="http://ailab.ifi.uzh.ch/testframework /2008/”

7 xmlns:evol="http://ailab.ifi.uzh.ch/testframework /2008/algorithm/evolution/”

8 xmlns:siman="http://ailab.ifi.uzh.ch/testframework /2008/algorithm /
simulatedannealing/”

9 xmlns:systematic="http://ailab.ifi.uzh.ch/testframework/2008/algorithm /systematic/

10 >

11

12 <algorithm type="Evolution”>

13 <evol:config

14 changeprobability="0.50"

15 distribution="gaussian”

16 population="50"

17 parents="5"

18 generations="10"

19 selection="1leaders”

20 elitism="on”

21 parameterscaling="4" />

22

23 <parameters>

24 <param name=" FrontLegLength” min="0.05” max="0.12" />

25 <param name=" HindLegLength” min="0.05" max="0.12" />

26 <param name="BodyLength” min="0.05" max="0.12" />

27 <param name="BodyWidth” min="0.05" max="0.12" />

28 </parameters>

29

30 <simulation program="./dumsim” />

31

32 </algorithm>

33

34 |</setting>

Listing 4.1: one_stage_experiment.xml

As the listing demonstrates, the root node is <setting>, which configures
global settings like the name of the experiment series, namespaces and so on.
Every configuration file has a <setting> node as the root node. It can usually
be transferred to other configuration files without any modifications except the
name of the experiment series.

On line 12, the top-level experiment is defined as an Algorithm FExper-
iment which uses the evolutionary algorithm to optimize the parameters.
<evol:config> contains the configuration of the evolutionary algorithm. The
attributes it can take differ from algorithm to algorithm and are described later
on. Common to every Algorithm Ezperiment is the definition of the parameters
it optimizes within the <parameters>-element (line 23 — 28).

Finally, on line 30, the program used for the simulation of these parameters
is defined (according to the previous definitions, this is a so called Simulator
Ezperiment). So, strictly speaking, we describe a two-stage experiment here
(Simulator Experiment within an Algorithm Experiment), but we usually do
not count the Simulator Ezperiment as a stage on its own.

4.2.2 Two-stage Experiment

A two-stage experiment is an experiment where the parameters are optimized
on two different stages, possibly by different algorithms. An example is shown

in figure [£.4]

The corresponding configuration file is shown in listing

16

AlgorithmExperiment
(evolutionary)
AlgorithmExperiment
(simulated annealing)

SimulatorExperiment

Figure 4.4: Two-stage optimization

1 <?xml version="1.0" encoding="UTF-8”"7>

2

3 <setting

4 name="Two—stage._experiment”

5 version="1.0"

6 xmlns=" http://ailab.ifi.uzh.ch/testframework /2008/”

7 xmlns:evol="http://ailab.ifi.uzh.ch/testframework /2008/algorithm/evolution/”

8 xmlns:siman="http://ailab.ifi.uzh.ch/testframework /2008/algorithm/
simulatedannealing/”

9 xmlns:systematic="http://ailab.ifi.uzh.ch/testframework /2008/algorithm /systematic/

10 >

11

12 <algorithm type="Evolution”>

13 <evol:config

14 changeprobability="0.50"

15 distribution="gaussian”

16 population="50"

17 parents="5"

18 generations="10"

19 selection="1leaders”

20 elitism="on”

21 parameterscaling="4" />

22

23 <parameters>

24 <param name=" FrontLegLength” min="0.05”" max="0.127 />

25 <param name=" HindLegLength” min="0.05" max="0.12" />

26 </parameters>

27

28 <algorithm name="sub_experiment” version="1.0" type="Simulated_-Annealing”>

29 <siman:config

30 inittemperature="16"

31 terminatetemperature="2"

32 bestfitness="1.0"

33 cooling="0.95" />

34

35 <parameters>

36 <param name="LegFrequency” min="0.5" max="4"/>

37 <param name="HindLegAmplitude” min="0.0” max="0.5"/>

38 <param name="FrontLegAmplitude” min="0.0" max="0.5"/>

39 </parameters>

40

41 <simulation program=”"./dumsim” />

42 </algorithm>

43 </algorithm>

44 </setting>

Listing 4.2: two_stage_experiment.xml

What is new in this example is, that the Algorithm Experiment contains an-
other Algorithm FExzperiment (line 28). This sub-experiment uses the simulated
annealing algorithm and optimizes the parameters defined on line 35 — 39.

This experiment, too, defines a Simulator Experiment on the lowest level
(line 41). The attribute value of program is the path to the program which is
called to test the set of parameters.

Vidyaa conducts this series of experiments as follows:

1. The evolutionary algorithm produces a generation of parameter values for
FrontLegLength and HindLegLength.

2. For each individual of this generation, the set of parameters is given to the
simulated annealing experiment which extends it with the LegFrequency,

17

the HindLegAmplitude and the FrontLegAmplitude. This means, the cur-
rent set of parameters now contains values for FrontLegLength HindLe-
gLength, LegFrequency, HindLegAmplitude and FrontLegAmplitude. To
decide how good the chosen values are, the simulated annealing algorithm
calls the Simulation Experiment after every step.

3. The simulation experiment returns a fitness value for every simulated set
of parameters. This fitness value is used by the simulated annealing algo-
rithm for its decisions.

4. When the simulated annealing algorithm is finished, it returns a fitness
value to the evolutionary algorithm. With this fitness value, the evolu-
tionary algorithm knows, how good the parameter values (FrontLegLength
and HindLegLength) it gave to the sub-experiment were.

5. After performing these steps for the entire generation, the evolutionary
algorithm uses the fitness values to generate the individuals for the next
generation.

As this list implies, an algorithm does not know about the parameters op-
timized by sub-experiments. This means, an experiment just knows what ”po-
tential” the values it passed on to the next experiment have.

4.2.3 Array Experiment

In an Array Experiment, the parameters are optimized on the same level, but
in different experiments. An example is shown in figure [1.5]

AlgorithmExperiment
(Evolutionary)

v
ArrayExperiment

AlgorithmExperiment
(SimulatedAnnealing)

AlgorithmExperiment
(SimulatedAnnealing)

AlgorithmExperiment
(SimulatedAnnealing)

AlgorithmExperiment
(systematic)

SimulatorExperiment

AlgorithmExperiment
(systematic)

AlgorithmExperiment
(systematic)

SimulatorExperiment

SimulatorExperiment

Figure 4.5: Array experiment

The corresponding configuration file is shown in listing

18

1 <?xml version="1.0" encoding="UTF-8” 7>

2

3 |<setting

4 name="Development_.of _Gaits_.for —a_Quadruped”

5 version="1.0"

6 xmlns="http://ailab.ifi.uzh.ch/testframework /2008/”

7 xmlns:evol="http://ailab.ifi.uzh.ch/testframework /2008/algorithm/evolution/”

8 xmlns:siman="http://ailab.ifi.uzh.ch/testframework /2008/algorithm /

simulatedannealing/”

9 xmlns:systematic="http://ailab.ifi.uzh.ch/testframework /2008/algorithm/systematic/

10 >

11

12 <algorithm type="Evolution” >

13 <evol:config

14 changeprobability="0.1"

15 distribution="gaussian”

16 population="80"

17 parents="8"

18 generations="250"

19 selection="roulette”

20 elitism="off”

21 parameterscaling="4” />

22

23 <parameters>

24 <param name="FrontLegLength” min="0.05" max="0.12" />

25 <param name="HindLegLength” min="0.05" max="0.127 />

26 </parameters>

27

28 <array fitness="average”>

29 <algorithm name="Sub_experiment_walking_gait” version="1.0" type="Simulated._
Annealing”>

30 <siman:config

31 inittemperature="16"

32 terminatetemperature="2"7

33 bestfitness="1.0"

34 cooling="0.95" />

35

36 <parameters>

37 <param name="PhaseLagLateral” min="0.45" max="0.55" />

38 <param name="PhaseLagAnteriorPosterior” min="0.45" max="0.55" />

39 </parameters>

40

41 <algorithm name="Test_stability” version="1.0" type="Systematic” >

42 <systematic:config

43 stepsperparameter="3" />

44

45 <parameters>

46 <param name=" C_Frequency” min="1.0" max="4.0" />

47 </parameters>

48

49 <simulation program="./dumsim” />

50 </algorithm>

51 </algorithm>

52

53 <algorithm name=”"Sub_experiment_trotting._.gait” version="1.0" type="Simulated.
Annealing”>

54 <!—— configuration similar as in ”sub_experiment_walking_gait” ——>

55 </algorithm>

56

57 <algorithm name="Sub_experiment_bounding_gait” version="1.0" type="Simulated._
Annealing”>

58 <!—— configuration similar as in "sub_experiment_walking_gait” ——>

59 </algorithm>

60

61 </array>

62 </algorithm>

63 | </setting>

Listing 4.3: array_experiment.xml

As shown in figure [4.5] and in the configuration file on line 28, the Array
Ezxperiment was used to implement several sub-experiments on the same level.
The attribute fitness defines how the fitness values of the individual experi-
ments are processed. fitness="average" means that the average of the fitness
values is returned to the next higher level.

4.2.4 Settings to the Algorithms

As we have seen in the previous examples, an Algorithm Experiment is set
up with <algorithm type="[typel">. The attribute type selects the actual
optimization algorithm to use. Of course, these optimization algorithms can be
further configured individually. The possible settings to the standard algorithms
can be taken from the following sections.

19

Evolutionary Algorithm

Usage of the evolutionary algorithm is defined by the type Evolution. The
basic configuration of the algorithm is done in config in the namespace of
http://ailab.ifi.uzh.ch/testframework/2008/algorithm/evolution/. Al-
lowed attributes and their values are listed in table 2]

Attribute Value Ezxplanation

changeprobability double Probability that a parameter changes
from one to another generation

distribution gaussian Distribution of the changes to the par-
ent’s values

generations integer Number of generations.

population integer Size of one generation.

selection leaders, Parent selection algorithm.

roulette

parents integer Number of parents (if "leaders” is used)

elitism on, off Elitism guarantees that the best indi-
vidual survives

parameterscaling double Stretches the gaussian curve

Table 4.2: Settings for the evolutionary algorithm

Simulated Annealing

Usage of the simulated annealing algorithm is defined by the type Simulated
Annealing. The basic configuration of the algorithm is done in config in
the namespace http://ailab.ifi.uzh.ch/testframework/2008/algorithm/
simulatedannealing/. Allowed attributes and their values are listed in table

43l

Attribute Value Ezxplanation

inittemperature double Init temperature

terminatetemperature double Temparature at which the algorithm
terminates

bestfitness double Maximal fitness value

cooling double Cooling constant (recommended eg.
0.95).

boltzmannconstant double default = 1, a lower value increases the
probability to accept less good parame-
ters

parameterscaling double default = 1, increases probability for big
changes

Table 4.3: Settings for the simulated annealing algorithm

20

Textbook Simulated Annealing

Usage of the textbook simulated annealing algorithm is defined by the type
Textbook Simulated Annealing. The basic configuration of the algorithm
is done in config in the namespace http://vidyaa.origo.ethz.ch/2009/
algorithm/textbooksa/. Allowed attributes and their values are listed in table

z4

Attribute Value Ezplanation

bestfitness double Maximal fitness value (> 0)

cooling double Cooling constant (> 0, < 1)

terminatetemperature double Temparature at which the algorithm
terminates (> 0)

inittemperature double Init temperature (> terminatetempera-
ture)

Table 4.4: Settings for the textbook simulated annealing algorithm

Systematic Algorithm

Usage of the systematic algorithm is defined by the type Systematic. The basic
configuration of the algorithm is done in config in the namespace http://
ailab.ifi.uzh.ch/ testframework/2008/algorithm/systematic/. Allowed
attributes and their values are listed in table .5l

Attribute Value Ezplanation

stepsperparameter integer Default number of steps per parameter

Table 4.5: Settings for the systematic algorithm

The stepsize can be changed for every parameter by the attribute steps in
the same namespace as the basic configuration.

The parameters-Element

The <parameters>-element contains a list of parameters the algorithm opti-
mizes. These parameters are defined by using a <param>-Element with the
mandatory attributes name="[name] ", min="[valuel]" and max="[value]".

It is also possible to set an additional attribute mode="relative", which
causes the algorithm to interpret min and max as relative values to the value
given by the experiment on the higher level. For instance, if the value for
parameter Weight has been set to 15 by the experiment on the higher level,

<param name="Weight” min="—1" max="1" mode="relative” />

means that the possible value range for Weight is 14 to 16.
But what if you want a parameter fixed to a certain value and not optimized
at all? Fortunately, there is an element for this, too. Just use

<fixed name=" [name]” value="[value]” />

instead of the <param>-element.

21

The simulation-Element

<simulation> is used to set up a Simulation Fxperiment. Or, to put it simpler,
it just defines which program is used to test the current parameter values.

The path to the program is given with the attribute program="[path]".
The optional attribute arguments="[args]" defines additional arguments to
the simulation program. As an example, the entry

<simulation program="/bin/simulator” attributes="—q.—w"’ />

causes Vidyaa to call /bin/simulator with the arguments -q and -w.

4.3 Running an Experiment

After finishing the preparations, we are finally ready to run the optimization
process. By calling vidyaa --help we get a list of the arguments it accepts.
Usually, Vidyaa is called with the arguments -1 [logfile], -e [directory]
and the configuration file to use. -1 defines the logfile to which the log mes-
sages and results are written while —e defines the path to which the simulated
parameter lists and their results are written.
For detailed information, read the manpage (man vidyaa).

4.3.1 Examples
Usage:

vidyaa --usage

Display the list of available arguments:

vidyaa --help

A standard call is:

vidyaa -1 experiment.log -e experiment/ experiment.xml
This call defines the logfile, the directory for the parameter lists and the con-
figuration file.

Per default, all messages are written into the logfile. We can influence this
behaviour by using one or more of the flags -—errors, --warnings, —--infos,
—--results and --nothing. For instance

vidyaa -1 experiment.log -e experiment/ \
--errors --warnings --results experiment.xml

defines, that errors, warnings and results are written to the logfile, but no info
messages.

4.4 Evaluating the Results of an Experiment
The last step of an experiment is the evaluation or collection of the results. To

do so, we usually interpret the values in the logfile. Listing shows a common
logfile.

22

[

INFO; Using generated seed: 1240922345

2 | INFO;simulating file: ./puppy2/evolution/generationl/individualO.parameter

3 | RESULT; C_Frequency;1.17545; RobotCenterOfMass; —0.661094; Energy;0.501866;
TraveledDistance;0.0748375; fitness ;0.00748375;

INFO; simulating file: ./puppy2/evolution/generationl/individuall.parameter

RESULT; C_Frequency ;1.28929; RobotCenterOfMass; —0.454526; Energy;0.425771;
TraveledDistance;0.0164073; fitness;0.00164073;

o

6 | [...]

Listing 4.4: log.txt

The first field indicates of which type a message is. Possible types are ER-
ROR, WARN, INFO and RESULT. When we evaluate the results, we are par-
ticularly interested in the RESULT lines. These lines print the parameter values
which were given to the simulation, as well as the parameters which were re-
turned by the simulation.

Since we have all the necessary information in the RESULT line, we can
process these entries of the logfile with the tool of our choice. For instance, we
could illustrate the behaviour of the fitness value using gnuplot. E|

In addition to the logfile, Vidyaa creates a directory structure which contains
all the input files to the simulation and the result files the simulation program
returned. Where these directories are located, was defined by -e when we
called Vidyaa. These files can be used, to start a simulation of a specific set of
parameters again.

2A tip: It is often useful to pre-process the logfile with command line tools like grep and
cut.

23

Part 11

Programmer Manual

24

Chapter 5

Architecture Overview

5.1 Basic Concepts

When Vidyaa was designed, the main objectives were extensibility, flexibility
and ease of use. The implemented architecture directly originates from these
objectives and many characteristics are quite easy to understand when this is
kept in mind.

One of the most basic principles is the separation of the actual optimization
from the testing of the parameters. This increases the flexibility as well as the
extensibility of the software. An in-depth description of this concept is provided
in chapter [6]

Furthermore, the task of setting up experiments was made easier for the user
by choosing XML as the format for a central configuration file. At the same
time, existing XML parsers made it easy for a programmer to interprete the
configuration file.

Concerning the internals of Vidyaa, it has been tried to keep it as simple as
possible, without cutting back on flexibility or functionality.

Basically, an optimization process is represented by a hierarchy of experi-
ments. Three different types of experiments are distinguished. Algorithm FEx-
periments optimize parameters and contain another experiment. Simulation
Experiments test the parameter values and Array Experiments contain one or
more experiments on the same hierarchy level. Figure shows a simplified
class diagram.

The fact that experiments can contain other experiments is reflected by the
classes Algorithm and ArrayFEzperiment, which both contain an Fzperiment.

DataLogger is the class responsible for log entries.

5.2 Programming Language and Libraries
Vidyaa is programmed in C++. It makes use of the following libraries:
e gsl
e gsicblas

o zml++-2.6

25

| SimulationExperiment I—
| AlgorithmExperiment I;
1

Algorithm

|AbstractExperimentLoader|

—l SystematicAlgorithm | SimulationExperimentLoader |
I EvolutionaryAlgorithm | ArrayExperimentLoaderl
—l SimulatedAnnealingAlgorithm | AlgorithmExperimentLoader |

Figure 5.1: Simplified Class Diagram

o zml2

e glibmm-2.4
e gobject-2.0
o sigc-2.0

o glib-2.0

26

5.3 Source Directory Structure

src
|-— DataLogger
| |-— DataLogger.cpp
| ‘—— DataLogger.h
|-— Experimenter.cpp
|-— Experimenter.h
|-— Experiments
| |-— Algorithms
| |-— Algorithm .cpp
|—— Algorithm.h
|—— AlgorithmExperiment .cpp
|-— AlgorithmExperiment.h
AlgorithmExperimentLoader .cpp
AlgorithmExperimentLoader . h
AlgorithmLoader .cpp
AlgorithmLoader . h
Evolutionary
| |—— EvolutionaryAlgorithm .cpp
| | |—-— EvolutionaryAlgorithm .h
| | |-— EvolutionaryAlgorithmLoader.cpp
| ‘—— EvolutionaryAlgorithmLoader.h
|—— SimulatedAnnealing
| |-— SimulatedAnnealingAlgorithm .cpp
| |—— SimulatedAnnealingAlgorithm .h
| |—— SimulatedAnnealingAlgorithmLoader .cpp
| ‘—— SimulatedAnnealingAlgorithmLoader .h
|-— Systematic
| SystematicAlgorithm .cpp
| | SystematicAlgorithm .h
| | SystematicAlgorithmLoader .cpp
| | ¢~ — SystematicAlgorithmLoader.h
‘—— TextbookSa
|-— TextbookSaAlgorithm.cpp
|-— TextbookSaAlgorithm.h
|—— TextbookSaAlgorithmLoader.cpp
‘—— TextbookSaAlgorithmLoader .h
Array
|—— ArrayExperiment.cpp
|-— ArrayExperiment.h
|-— ArrayExperimentLoader.cpp
‘—— ArrayExperimentLoader.h
Experiment .cpp
Experiment .h
ExperimentLoader .cpp
ExperimentLoader . h
LoaderException.cpp
LoaderException.h
f—— Simulators
|-— SimulationExperiment .cpp
|-— SimulationExperiment.h
|-— SimulationExperimentLoader.cpp
| ‘—— SimulationExperimentLoader.h
|-— common
|-— Directory.cpp
|-— Directory .h
convert .cpp
convert .h
include
| ‘—— types.h
|-— paramutils.cpp
‘—— paramutils.h
‘—— main.cpp
11 directories , 50 files

27

Chapter 6

Interface to the Simulator

Vidyaa was designed with flexibility and extensibility in mind. To achieve this,
knowledge about the parameters was delegated to a simulation program, which
simulates the parameters and returns a value to Vidyaa to let it know, how
good the parameters are. Vidyaa itself has no idea what the parameters it is
optimizing represent.

The interface between Vidyaa and the simulation software is also discussed
in the User Manual. Since the basic principles are described in the User Manual,
it is advised to read it before you read this chapter.

6.1 Example PuppySimulator

PuppySimulator is a software which simulates a Puppy robot using Webotsﬂ
The robot’s parameters are read from a parameter file specified by the argument
-i [infile] and the results are written into a file specified by —o [outfile].
The -i and -o arguments are necessary for every simulation program since
Vidyaa calls the simulator with these arguments to specify an input and output
file. The input file contains the parameters and their values, whereas the output
file contains results of the simulation, in particular a fitness value. This fitness
value is the measurement for the quality of the parameter values.

As figure illustrates, the actual simulation program is completely inde-
pendent of Vidyaa, as long as it respects the interface. This way, it is also
possible to call the simulation program as a standalone application. You will
like that in particular when you want to simulate a specific set of parameters
again.

6.2 File Format

The format of the input and output file is easy to understand. There is one
parameter per line and a line consists of the parameter’s name followed by a
space and its value. An input file could look as follows:

Length 10.5
Height 2.25

Lhttp://www. cyberbotics.com

28

1. start of an experiment

3, calls

2. writes

4, reads
PuppySimulator M. reads

2T ppaetersit

i s, reads 1

‘ individual_controller., txt ‘

! puppy.wbt !

‘ webots / ‘

| [EEEEEEE LT LICEEEE R UL L) L) |

i SUpervisor 1 robot !

‘ [- L SySpRpRpap ‘

'ﬁL Vj

y 10. writes \r
B JPtiias results, txt
specific to puppySimulator (internals of puppySimulator) L.

includes fitness value

Figure 6.1: Interface between the framework and the PuppySimulator

The output file’s format is exactly the same. The only constraint is, an
output file has to contain a parameter called fitness with a value. Additional
parameters and values are optional (all returned parameters are written into
the log).

6.3 Writing a Simulator

As a programmer, you probably wonder, when we eventually get to the point
and tell you how to write a simulator. Sorry about the delay, here we go:

1. Select a programming language of your choice.

2. Make sure your simulation program understands the arguments -i [inputfilel

and -o [outputfile].

3. Read the parameters and their values from the input file and simulate
them in the way you like.

4. Write a fitness value into the output file (fitness [valuel).
5. Write additional results of your simulation into the output file.

6. Close the open files, clean up and return.

29

Yes, it’s that easy. Well, maybe one more thing: You should check whether
the parameters you get in the input file are valid. If they are not, print an error
message.

30

Chapter 7
Extending Vidyaa

This chapter deals with the extension of Vidyaa by additional algorithms and
experiment types.

As already illustrated in the class diagram in figure[5.1] the experiment types
and the actual optimization algorithms are separated. Thus, the introduction of
a new optimization algorithm is relatively easy and can be done without having
to touch the experiment types.

In case the available experiment types Algorithm, Array and Simulation
shouldn’t be enough for your needs, it’s also possible to add your own experiment

type.

7.1 Implementation of an Optimization Algo-
rithm

A closer look at the interesting parts of the class diagram in figure [7.1] reveals
the details of the architecture.

The Algorithm The Algorithm Loader

Algorithm AbstractExperimentLoader|
/\
SystematicAlgorithm
EvolutionaryAlgorithm
—| SimulatedAnnealingAlgorithm |

SimuIationExperimentLoader|

ArrayExperimentLoader

AlgorithmExperimentLoader |

AlgorithmLoader

SimulatedAnnealingAlgorithmLoader |

EvolutionaryAlgorithmLoader |

SystematicAIgorithmLoader|

Figure 7.1: Detailed excerpt of the class diagram (algorithms)

31

The actual implementation of the algorithm is done in a class derived from
the abstract class Algorithm.

Additionally, every algorithm needs its own loader which is derived from
AlgorithmLoader and is responsible for the basic configuration of the algorithm.

Altogether, the following tasks have to be done if you want to introduce your
own algorithm:

1. Create a new class called MyAlgorithm, derived from Algorithm.

2. Implement the methods initialize(...), hasNext(), next(), extendDirectory(...),
getName() and fitnessFeedback(...).

3. Create the loader called MyAlgorithmLoader by deriving AlgorithmLoader.
4. Implement its methods getNamespace() and load(...).

5. Register the loader in the class Ezperimenter. This is done by instanti-
ating the loader in initLoader(), choosing a name and adding it to the
AlgorithmExperimentLoader. The chosen name is the name by which the
algorithm can be selected in the configuration file.

Of course, this list is more of a to-do-list than an actual implementation
guide. Before you implement your own algorithm, you should have a look at
the source code of an existing algorithm.

7.2 Implementation of an Experiment Type

Modifying or extending the experiment types is done in a similar way as the
introduction of a new algorithm. The relevant excerpts of the class diagram are
shown in figure

The Experiment The Experiment Loader

AbstractExperimentLoader|
ArrayExperiment SimulationExperimentLoader|

—l SimulationExperiment | ArrayExperimentLoader |

—l AlgorithmExperiment | AlgorithmExperimentLoader |

Figure 7.2: Detailed excerpt of the class diagram (experiment types)

Basically, the following tasks must be done:
1. Create a new class MyFxperiment, derived from Experiment.

2. Implement its run()-method.

32

3. Create the loader called MyFExperimentLoader by deriving AbstractExper-
imentLoader.

4. Tmplement its createEzperiment(...)-method.

5. Register the loader in the class Fxperimenter. This is done by instantiating
the loader in inétLoader(), chosing a name and adding it to m_experimentLoader.
The chosen name is the name of the XML node which will be used in the
configuration file to create an experiment of this type.

As with the implementation of a new algorithm, this list does not contain
all the information necessary to implement a new experiment type. You should
have a look at an existing experiment type before you start writing your own.

33

Bibliography

[1] Simulated annealing. http://en.wikipedia.org/wiki/Simulated_
annealing, 05 2009.

[2] Max Lungarella. Ezploring Principles Towards a Developmental Theory of
Embodied Artificial Intelligence. PhD thesis, University of Zurich, Switzer-
land, 2004.

34

http://en.wikipedia.org/wiki/Simulated_annealing
http://en.wikipedia.org/wiki/Simulated_annealing

	I User Manual
	System Requirements
	Architecture Overview
	The Basic Idea
	The Experiment Types
	Experiment Configuration
	Interface to the Simulator

	Available Optimization Algorithms
	Simulated Annealing
	Evolutionary Algorithm
	Systematic Algorithm

	Using Vidyaa
	Designing an Experiment
	Specify the Parameters
	Specify the Experiments

	Setting up an Experiment
	One-stage Experiment
	Two-stage Experiment
	Array Experiment
	Settings to the Algorithms

	Running an Experiment
	Examples

	Evaluating the Results of an Experiment

	II Programmer Manual
	Architecture Overview
	Basic Concepts
	Programming Language and Libraries
	Source Directory Structure

	Interface to the Simulator
	Example PuppySimulator
	File Format
	Writing a Simulator

	Extending Vidyaa
	Implementation of an Optimization Algorithm
	Implementation of an Experiment Type

